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Abstract 

A phenomenological model has been developed for zinc blende structure and diamond structure crystals. Both types of 

crystals are covalent and tetrahedrally bonded. The model developed in the present work is an extended valence force field 

model which takes into account the short-range valence force interactions between bonded atoms and central interaction 

between non-bonded atoms. The model also incorporates the long-range coulombic interaction for zinc-blende structure 

crystal which are partially ionic in bonding. The extended valence force model has been applied to lattice vibration of 

diamond to obtain the theoretical values of phonon dispersion curves along three principal symmetry directions and Debye 

characteristic temperatures at different temperatures. The calculated results are compared with the available experimental 

values with satisfactory agreement. 
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Introduction 

Diamond is an elemental semiconductor which is entirely 

different from other elemental semiconductors of diamond 

structure. The study of diamond has been made extensively both 

experimentally and theoretically. Earlier Pandey and Dayal
1
 and 

Singh and Dayal
2
 have reported the lattice dynamics of diamond. 

Patel
3
 et al also reported the lattice dynamics of diamond applying 

BKM for phonon dispersion curves along different symmetry 

directions. Bashnov
4
 et al studied the lattice dynamics of diamond 

structure crystal using Keating’s valence force field. In recent 

years some studies
5-6

 have been made on the different aspects of 

lattice dynamics of diamond and diamond structure elemental 

semiconductors. Recently some studies
7-10

 have been reported on 

lattice dynamics and other properties of tetrahedrally bonded 

elemental and binary semiconducting crystals. 

 

In present lattice dynamical model of diamond structure crystals 

the valence force field model has extended to include the central 

interaction between non-bonded atoms up to second neighbors for 

short-range interactions. In addition to this the bond-bending, 

bond-stretching and interactions between bond-stretching internal 

coordinates are considered for short-range interaction between 

atoms. The extended valence force field model is developed for 

the zinc-blende crystals which are partially ionic and takes into 

account the coulombic interaction. The model is modified for the 

diamond structure elemental semiconductor crystals which are 

predominantly covalent and the ionicity is almost negligible. The 

extended valence force field is physically realistic for such 

covalent elemental semiconductor crystals. 

 

Methodology  

The lattice dynamical model developed for the tetrahedrally 

bonded zinc-blende and diamond structure semiconducting 

crystals in the present work is a phenomenological model in the 

sense that vibrations of atoms and interactions between them have 

been taken just like the phenomenon of vibrations of atoms in 

molecules in the fluid phase. The molecular spectra are explained 

by taking bond-stretching force between valence atoms and the 

bending of valence angles. This is called a simple valence force 

field. In solids which are predominantly covalent, the interaction 

between valence bonds and valence angles are considered in the 

potential function of atoms in the unit-cell in the crystalline 

forms. The present extended valence force field (EVFF) takes 

into account the interaction between non-bonded atoms of the 

crystal in accordance with the modification of Urey-Bradley
11

. 

The changes in the bond-length and bond-angles during vibration 

are called internal coordinates, following the method of 

Wilson
12

et al, the valence internal coordinates are transformed 

into atomic displacement coordinates of the crystal as reported by 

Singh and Roy
13

. This transformation is employed in expressing 

the potential energy of the atoms of the unit cell in terms of the 

components of the displacements of atoms. In this model, the 

contribution to potential energy from other neighbouring atoms 

except first and second neighbours has been ignored because of 

the short-range character of the force-field. 

 

The potential energy for short-range interactions of atoms of unit 

cell of tetrahedrally bonded semiconducting crystals having two 

types of atoms is given by  
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In equation (1), i is the reference atom (one type) (1), j and k are 

two atoms (another types) bonded to i, and l is atom (type one) 

bonded to j. Also, in equation (1), we have: 

rK = bond-stretching force constant, 
rK ′ = central force constant 

between non-bonded atoms of one type, 
rK ′′ = central force 

constant between non-bonded atoms of another type, 
θK ′ = bond-

bending force constant for one type of bond-angle, 
θK ′′ = the 

bond-bending force constant of another bond-angle, 
rrK = the 

force constant for the interaction between adjacent bonds  

 

The components of the forces acting on the reference atoms of 

two types of the unit cell are obtained from the relation  

 

( )Vgrad−=F                (2) 

 
Secular equation: The secular equation of the lattice vibration of 

a lattice with a basis is written as  0σσδαβδ2ωσσqαβD =′−
′







               (3) 

 

In equation (3)









′σσqαβD are the elements of the dynamical matrix 

and 
αβδ ,

σσδ ′
are the Kronecker delta function. 

 

To obtain the elements of the dynamical matrix for the short-

range interaction, the components of the forces acting on the 

reference atoms by first and second neighbours are obtained. The 

internal coordinates are transformed into the atomic displacement 

coordinates. Taking help of this transformation and applying the 

equation (1) and equation (2), the elements of the dynamical 

matrix for short-range interaction are obtained. 

 

The diamond and other crystals of diamond structure are 

predominantly covalent, the Coulombic interaction is neglected. 

As there is only one type of atoms in such crystals, we have taken  

θθθ KKKKK rr =′′=′′′=′ ,  

 

The first reference atom is designated as ‘1’ and second reference 

atom is designated as ‘2’. Thus following elements of the short-

range interaction matrix under extended valence force field model 

(EVFF) are obtained for diamond lattice. 
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Here 0r is the chemical bond length and ‘a’ is half lattice 

constant, other elements of the determinantal matrix ( )σσαβ
′,qD

can be obtained by circular permutation of the indices x, y, z 

where, α, β stands for x, y and z. The elements of the dynamical 

matrix obey the following relations. 
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Elastic constants: Taking into account the contribution from 

coupling coefficients, the following expression for three elastic 

constants C11, C12 and C44 are obtained in terms of model 

parameters on solving the secular determinant for long waves for 

diamond structure crystals. 
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Evaluation of model parameters: The values of EVFF model 

parameters for diamond are obtained with the help of the 

expression of the longitudinal and transverse optic phonons at 

zone center and at the zone boundary of Brillouin zone along 

[100] symmetry direction. The expressions for LO (Γ), LO(X) 

and TO(X) are obtained by solving the secular equation for zone 

centre (Γ) and zone boundary (X) along symmetry direction 

[100]. The expression are  
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From these expression, we have  

 

( ) ( ) ( )





Γ+−= 222

2

0 16

2

4

1

8

1

16

2
LOTOLO mXmXm

r

K
ωωωθ               (13) 

and  

( ) ( ) ( )





Γ−+=′ 222

16

19

4

1

8

15

16

1
LOTOLOr mXmXmK ωωω              (14) 

 

The parameter Kr is obtained applying the equilibrium condition 

of the lattice. After obtaining the values of 
rK ,

rK ′  and 
θK , the 

values of 
rrK  is calculated from equation (10). It is significant to 

note the values of model parameters have been evaluated without 

taking use of the elastic constants, C11, C12 and C44. The values of 

model parameters and the input physical data for their evaluation 

for diamond crystal are given in the table-1. 

 

Table-1 

Input Physical data 

Model parameters in 

units of 10
4
 dynes cm

-

1
 

( ) THzLO 975.39=Γν  309212.14−=rK  

( ) THzXLO 52.35=ν  577303.3=′
rK  

( ) THzXTO 16.32=ν  067446.76−=rrK  

2a (lattice constant) = 3.5668×10
-

8
 cm 

935913.2=θK  

m(mass) = 19.9366×10
-34

 gm 

 

Results and Discussion 

Phonon dispersion curves for diamond: Warren
14

 et al 

measured the phonon frequencies in symmetry directions. 

Robertson
15

 et al reported the first order Raman spectra of 

diamond. The one phonon infrared spectra of diamond have been 

studied experimentally by Smith and Hardy
16

. The precise data on 

second order Raman spectra for diamond are made available by 

Solin and Ramdas
17

. 

The phonon dispersion curves along different symmetry 

directions have been obtained on the basis of extended volume 

force field approximation by solving the secular equation utilizing 

the values of model parameters given in table. The phonon 

dispersion curves along symmetry directions [100], [110] and 

[111] are shown in Figure-1. The experimental points due to 

Warren
14

 et al have also been shown in figure. The computed 

results are in excellent agreement with the experimental values. In 

view of the small number of force parameters used in the present 

work, the EVFF model describes satisfactorily the phonon 

dispersion results obtained experimentally. 

 

Specific Heat and Debye Characteristic Temperatures of 

Diamond: Following the theory of specific heat of solids by 

Born and Von Karman
18

 the atomic specific heat at constant 

volume is given by  

( ) ( )∑=
ν

νν gENRCV 3                (14) 

 

where,  N = 1/3mn, m = number of divisions in the first 

Brillouin zone, n = number of atoms in the unit cell, R = 

universal gas constant, g(ν) is the frequency distribution 

function and E(ν) is the Einstein function given by 

 

( ) ( ) ( )
( )21

2

exp

exp

−
=

KTh

KThh
E

ν

νν
ν                 (15) 

 

For the calculation of Debye characteristic temperature 
Dθ at 

various temperatures, the values of CV is computed first with the 

help of equation (14). TDθ  values corresponding the different 

computed values of CV are obtained from TC DV θ−  table
19

.  

Having a theoretical values of TDθ obtained in this way, 
Dθ is 

obtained at various temperatures.  

 

The vibrational frequencies of diamond for 48 wave vectors are 

computed employing the EVFF model. The frequency 

distribution function g(ν) is obtained from computed values of 

phonon frequencies. The computed values of g(ν) are used in 

calculating the specific heats at different temperatures for 

diamond crystal. 

 

The computed results of Debye characteristic temperatures for 

diamond in the present work are given in figure-2. The 

experimental values of Pitzer
20

 are also given in the figure. The 

theoretical results agree satisfactory at low temperatures. 

However, there is a divergence from experimental results at 

higher temperatures. This is mainly due to the harmonic 

approximation adopted in the calculation of the vibrational 

potential energy of atoms of the crystal. The calculated results 

may be improved if anharmonic vibration is considered in the 

development of this lattice dynamical model. But our results 

compare well with the results of Pandey and Dayal
1
. 

Noteworthy feature of EVFF model lies in the fact that it 

involves small number of parameters, the evaluation of which 
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Conclusion 

The extended valence force field (EVFF) developed for the 

tetrahedrally bonded elemental and binary semiconductors has 

been found to explain satisfactorily the experimental results of 

phonon dispersion curves, specific heats and Debye 

characteristic temperatures of diamond.  It is significant the 

present lattice dynamical model developed for elemental 

semiconductors does not require the use of the values of elastic 

constants for the evaluation of model parameters. 
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