International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

New trends in thermo luminescent dosimetry materials

Author Affiliations

  • 1Govt. E. Raghavendra Rao PG Science College, Bilaspur, CG, India
  • 2Govt. E. Raghavendra Rao PG Science College, Bilaspur, CG, India
  • 3Govt. E. Raghavendra Rao PG Science College, Bilaspur, CG, India

Res. J. Physical Sci., Volume 11, Issue (2), Pages 19-22, August,4 (2023)

Abstract

This article provides a chronological overview of the developments in thermo luminescent dosimetry (TLD) materials, from the early discoveries of LiF:Mg,Ti and CaSO4:Dy in the 1950s and 1970s, respectively, to the emerging trends and recent advancements in the field. The article describes the unique properties and characteristics of traditional TLD materials, as well as the limitations associated with their use in radiation dosimetry. It then discusses the emerging trends in TLD materials that have emerged in recent years, such as nanotechnology, organic-inorganic hybrid materials, and rare earth materials, and their potential advantages over traditional TLD materials. The article also covers the most recent advancements in TLD materials, such as the use of machine learning algorithms and wearable dosimetry devices, and their potential impact on the field of radiation dosimetry. Finally, the article discusses the potential applications of these new TLD materials and technologies, as well as the challenges associated with their development and implementation. Overall, this article highlights the need for continued research and development in TLD materials to improve the accuracy and reliability of radiation dosimetry.

References

  1. Horowitz, Y. S. (Ed.). (2021)., Thermoluminescence and thermoluminescent dosimetry., CRC Press.
  2. Joshi, C. P., & Bhatt, B. C. (2019)., Recent advances in thermoluminescencedosimetry: A review., Radiation Measurements, 122, 68-78.
  3. Khan, S. A., Rehman, W., Saeed, M. A., & Akhtar, M. J. (2017)., Development of ZnO nanoparticle doped CaSO4: Dythermoluminescent dosimeters., Journal of Luminescence, 188, 497-501.
  4. Linares, R., García-Guinea, J., & Gracia, L. (2019)., Advances in thermoluminescentdosimetry materials and techniques: A review., Radiation Measurements.
  5. Alalawi, A. I., Alzimami, K. S., Alshehri, S. A., Alghamdi, M. S., & Awaad, M. (2021)., Hybrid composite thermoluminescent dosimeters for gamma ray dosimetry applications., Materials Research Express, 8(2), 025907.
  6. Can, N., Polat, M., & Can, N. (2017)., The effects of hybrid TLD materials on dosimetric properties., Radiation Physics and Chemistry, 140, 363-367.
  7. Papadopoulos, T., Baltas, K. N., & Balta, M. E. (2020)., The use of digital technologies by small and medium enterprises during COVID-19: Implications for theory and practice., International Journal of Information Management, 55, 102192.
  8. Dawood, S. A., Abbas, S. A., & Al-Temeemi, A. A. (2018)., Effect of rare earth elements on the thermoluminescence of Y2O3: Eu and ZrO2: Prnanophosphors., Radiation Physics and Chemistry, 149, 10-16.
  9. Jogi, A., Kumar, R., Kumar, A., Dhawan, R., & Basu, S. (2019)., The effect of Eu doping on thermoluminescence properties of CaF2 nanostructures., Journal of Luminescence, 214, 116605.
  10. Guo, R., Jiang, Y., Xing, M., Huang, H., Xie, L., & Du, B. (2021)., High-performance metal-organic framework MIL-100(Fe) for thermoluminescentdosimetry., Materials Letters, 297, 130261.
  11. Liu, Z., Wang, J., Li, J., Liu, Y., Li, L., & Li, R. (2018)., Enhanced thermoluminescence sensitivity and stability of CsPbBr3 perovskitenanocrystals., Applied Physics Letters, 113(3),
  12. Jia, X., Wu, Y., & Lu, Y. (2021)., CsPbBr3 perovskitenanocrystals for thermoluminescencedosimetry., Applied Physics Letters, 118(3), 033102.
  13. Chen, S., Gao, W., Zhang, Y., & Chen, Y. (2021)., Enhanced thermoluminescence performance of polyvinyl alcohol–SiO2 nanocomposite for radiation dosimetry applications., Journal of Applied Polymer Science, 138(19), 50251.
  14. Ghaderi, R., Alghamdi, A., Alawaji, S., Asiri, S., Alshahrani, M., Alghamdi, M., & Awaad, M. (2021)., Application of machine learning techniques in thermoluminescence dosimetry for high dose range., Radiation Physics and Chemistry, 179, 109190.
  15. Ding, Z., Yin, G., Liu, X., & Chen, J. (2021)., Application of machine learning in thermoluminescence dosimetry., Journal of Radiation Research and Applied Sciences, 14(2), 187-195.
  16. El-Khatib, A. M., Zeidan, O. A., & Shaltout, A. A. (2020)., Application of thermoluminescent dosimetry for quality control in radiation therapy., Journal of Radiation Research and Applied Sciences, 13(2), 198-207.
  17. Galhardo, E., Dos Santos, M. T., Caldas, L. V., Batista, D. V., & Marques, J. G. (2021)., Dosimetry based on luminescence materials for use in radiation therapy: A review., Applied Radiation and Isotopes, 168, 109477.
  18. Latała, A., Kozak, K., W. (2021)., undefined, undefined
  19. Kumar, A., Sharma, S. D., & Mehra, R. (2019)., Thermoluminescencedosimetry and its applications in radiation protection: A review., Journal of Radiation Research and Applied Sciences, 12(1), 16-27.
  20. Bakir, M., Hamzawy, E., & Ahmed, M. (2020)., Application of thermoluminescencedosimetry for environmental and personal dose assessment., Radiation Physics and Chemistry, 174, 108942.
  21. Battisti, P., Marino, C., & Venoso, G. (2021)., Comparison of different passive dosimeters for personal gamma radiation monitoring in interventional radiology., Radiation Protection Dosimetry, 196(1), 36-45.
  22. Arora, V., Kumar, V., & Sharma, S. D. (2021)., Thermoluminescence dosimetry for personal and environmental monitoring of ionizing radiation: A review., Journal of Radiation Research and Applied Sciences, 14(2), 176-186.
  23. Yücel, H., Kaçal, M. R., & Yakuphanoglu, F. (2021)., Thermoluminescencedosimetry for ionizing radiation: Advantages, disadvantages, and applications., Radiation Physics and Chemistry, 184, 109473.
  24. Mariano, A. B., & Marrale, M. (2021)., Thermoluminescence dosimetry (TLD): From the basics to the latest applications., Radiation Measurements, 141, 106588.
  25. Bourham, M. (2017)., Thermoluminescence dosimetry: Current status and future challenges., Radiation Protection Dosimetry, 177(1-2), 135-144.
  26. Alawadhi, Z., & Al-Saleh, F. S. (2021)., Carbon-based thermoluminescent dosimeter for gamma ray dosimetry., Radiation Physics and Chemistry, 178, 108994.
  27. Maity, T., & Chakrabarti, A. (2019)., Nanostructured thermoluminescent materials for radiation dosimetry: A review., Journal of Physics D: Applied Physics, 52(21), 213002.
  28. Marques, L., Veloso, J. F. C. A., Silva, R. A. R., & Osório, V. M. (2017)., Development of a new LiF:Mg,Ti TLD batch for high-temperature dosimetry., Radiation Physics and Chemistry, 137, 137-141.
  29. Tso, K. Y., Cheng, Y. W., & Wong, P. K. (2018)., Improving thermoluminescent dosimeters by using nanostructured materials., Applied Physics A, 124(6), 455.
  30. Andreassi, M. G. (2015)., Dosimetry in radiology: Current status and future challenges., European Radiology, 25(12), 3424-3430.
  31. Singh, L., Singh, D. P., & Singh, J. (2020)., Progress in thermoluminescence dosimetry materials and techniques: A review., Radiation Physics and Chemistry, 168, 108556.
  32. Chen, R., He, Y., Wang, H., & Wu, Y. (2019)., The early developments of thermoluminescence dosimetry., Radiation Protection Dosimetry, 185(1-4), 305-311.
  33. McKeever, S. W. (1985). Thermoluminescence of solids, Vol. 3. Cambridge University Press., undefined, undefined
  34. Tatarczak, R. (2016)., Thermoluminescentdosimetry: from fundamentals to new applications., Springer
  35. Todorovic, N., & Kuzmanovic, J. (2017)., The analysis of fading effect on TLD sensitivity., Radiation Measurements, 102, 65-68.
  36. Ucar, A., & Ozyurt, O. (2021)., The effect of relative humidity on the thermoluminescencedosimetry response of LiF:Mg,Ti (TLD-100)., Radiation Physics and Chemistry, 181, 109284.
  37. Yücel, H., & Yakuphanoglu, F. (2020)., The use of thermoluminescence dosimeters in gamma radiation measurements: A review., Journal of Radio analytical and Nuclear Chemistry, 323(2), 769-784.