International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Study of the physical and mechanical properties in volume of TiN by the MEAM method

Author Affiliations

  • 1Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Research Group on Physical and Chemical Properties of Materials, Congo Brazzaville and Association Alpha Sciences Beta Technologies, Congo Brazzaville
  • 2Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Research Group on Physical and Chemical Properties of Materials, Congo Brazzaville and Association Alpha Sciences Beta Technologies, Congo Brazzaville
  • 3Faculty of Science and Technology, Marien Ngouabi University, Congo Brazzaville and Research Group on Physical and Chemical Properties of Materials, Congo Brazzaville and Geological and Mining Research Center, Congo Brazzaville

Res. J. Physical Sci., Volume 11, Issue (2), Pages 9-18, August,4 (2023)

Abstract

We present in this work the results of our study on the physical and mechanical properties of TiN. This work consisted in determining the physical and mechanical properties of the different crystallographic structures (B1, B2 and B3) of TiN using the MEAM (Modified Embedded Atom Method) as well as the MEAM potentials of titanium and nitrogen. We used the calculation code LAMMPS, based on classical molecular dynamics, to determine the most stable structure of TiN which remains the B1 structure with the crystal parameter a=4.24 A°, stable structure verified by the mechanical stability relation, for the cubic structure, given by the relation C_11-C_12> 0, C_11> 0, C_44> 0, C_11+2C_12 > 0. The elastic constants found also allowed us to evaluate the anisotropy of the cubic system of TiN, the directions [110] and [111] are anisotropic in terms of wave progation velocity, unlike the one on the direction [100] whose propagation velocity remains the most important. The results obtained in this study were compared with the theoretical results and show considerable agreement.

References

  1. J.W. He, C.D. Bai, K.W. Xu and N.S. Hu (1995)., Improving the anticorrosion and mechanical behaviour of PACVD TiN., Surf. Coatings Technol., 74–75, (1995), 387–393.
  2. Oh, S., Suh, D., & Lee, S. (1998)., Microstructure of TiN/carbon steel functionally gradient materials processed by high-energy electron beam irradiation., Materials Science and Engineering: A, 248(1-2), 245-255.
  3. Hultman, L. (2000)., Thermal stability of nitride thin films., Vacuum, 57(1), 1-30.
  4. Yu, Z., Inagawa, K., & Jin, Z. (1995)., Tribological properties of TiN and TiC films in vacuum at high temperature., Thin solid films, 264(1), 52-58.
  5. Li, J., Mayer, J. W., Shacham‐Diamand, Y., & Colgan, E. G. (1992)., Formation of TiN‐encapsulated copper structures in a NH3 ambient., Applied physics letters, 60(24), 2983-2985.
  6. Nicolet, M. A. (1978)., Diffusion barriers in thin films., Thin solid films, 52(3), 415-443.
  7. S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim (1990)., Reactively sputtered TiN as a diffusion barrier between Cu and Si., J. Appl. Phys., 68 5176–5187.
  8. M. Repeta, L. Dignard-Bailey, J.F. Currie, J.L. Brebner and K. Barla (1988)., The fabrication of TiN films by reactive evaporation and rapid thermal annealing., J. Appl. Phys., 63, 2796–2799.
  9. M. Wittmer and H. Melchior (1982)., Applications of TiN thin films in silicon device technology., Thin Solid Films, 93, 397–405.
  10. Raiteri G. and Calcatelli A. (2001)., Thermal desorption from stainless steel samples coated with TiN and oxide layers., Vacuum, 62, 7–14.
  11. Smith G.B., Swift P.D. AND Bendavid A. (1999)., TiNx films with metallic behavior at high N/Ti ratios for better solar control windows., Appl. Phys. Lett., 75, 630.
  12. Wang S., Bai X., Wang B. and Fan Y. (1996)., Preparation of TiN film on brass by CAPD as a decoration system., 278, 67–73.
  13. Ibrahim, M. A. M., Korablov, S. F., & Yoshimura, M. (2002)., Corrosion of stainless steel coated with TiN,(TiAl) N and CrN in aqueous environments., Corrosion Science, 44(4), 815-828.
  14. Bes, R. (2010)., Comportement thermique du xénon dans le nitrure de titane fritté matrice inerte d’intérêt des RNR-G (Doctoral dissertation., Université Claude Bernard-Lyon I.
  15. T. Nsongo (1987)., Study by Radiofrequency and D.C Triode Sputtering of Structure and Adhesion of Titaniun and Titanium Nitride Deposed on Metallic Substrate., Doctorate Thesis, Universite Aix- Marseille.
  16. Grosso, S. (2017)., Revêtements architecturés de Ti, TiN et TiO élaborés par pulvérisation cathodique au défilé sur des fils en acier inoxydable: relation entre la composition chimique., la microstructure et les propriétés d
  17. Fodil, M., Mounir, A., Ameri, M., Baltache, H., Bouhafs, B., Al-Douri, Y., & Ameri, I. (2014)., Structural and elastic properties of TiN and AlN compounds: first-principles study., Materials Science-Poland, 32, 220-227.
  18. Kim, Y.-M. and B.-J. Lee (2008)., Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems., Acta Materialia, 56(14), 3481-3489.
  19. Ranganathan, S. I., & Ostoja-Starzewski, M. (2008)., Universal elastic anisotropy index., Physical review letters, 101(5), 055504.
  20. Wang, A. J., Shang, S. L., Du, Y., Kong, Y., Zhang, L. J., Chen, L., ... & Liu, Z. K. (2010)., Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations., Computational materials science, 48(3), 705-709.
  21. Eboungabeka, A. D., Eboungabeka Trigo, E. R. M., & Nsongo, T. (2021)., Reactivity of titanium dental implants in salivary environment in the presence of foods consumed in the Republic of the Congo., Advances in Materials Physics and Chemistry, 11(05), 93-99.
  22. Tian, J., Zhao, Y., Wang, B., Hou, H., & Zhang, Y. (2018)., The structural, mechanical and thermodynamic properties of Ti-B compounds under the influence of temperature and pressure: First-principles study., Materials Chemistry and Physics, 209, 200-207.
  23. Xiao, B., Feng, J., Zhou, C. T., Jiang, Y. H., & Zhou, R. (2011)., Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides., Journal of Applied Physics, 109(2).
  24. Mouhat, F., & Coudert, F. X. (2014)., Necessary and sufficient elastic stability conditions in various crystal systems., Physical review B, 90(22), 224104.
  25. Wang, J. H., Lu, Y., Zhang, X. L., & Shao, X. H. (2018)., The elastic behaviors and theoretical tensile strength of γ-TiAl alloy from the first principles calculations., Intermetallics, 101, 1-7.
  26. Ravindran, P., Fast, L., Korzhavyi, P. A., Johansson, B., Wills, J., & Eriksson, O. (1998)., Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi 2., Journal of Applied Physics, 84(9), 4891-4904.
  27. Ledbetter, H., & Migliori, A. (2006)., A general elastic-anisotropy measure., Journal of applied physics, 100(6).