International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Optical, morphological and thermal studies of polyaniline (PANI)-ZnS composites and their sensitivity performance towards ammonia

Author Affiliations

  • 1Department of Physics, Gauhati University, Guwahati-14, Assam, India
  • 2Department of Physics, Gauhati University, Guwahati-14, Assam, India

Res. J. Physical Sci., Volume 11, Issue (2), Pages 1-8, August,4 (2023)

Abstract

In the present study, optical, morphological and thermal studies of polyaniline (PANI)-ZnS composite are carried out and are tested for NH3 sensing. The composites are prepared by chemical co-dispersion by preparing ZnS nanoparticles (NPs) in the same bath of PANI synthesis. The as prepared composite materials are studied for optical, morphological and thermal properties through UV-Visible, photoluminescence (PL), FTIR, FESEM and TGA. The sensitivity towards ammonia is measured through the measurement of the change in electrical resistance of the material on NH3 intake. UV- Visible spectra show bands in the composite slightly red shifted compared to PANI. PL spectra shows some voids/defects related luminescence peaks which might act as site are to be suitable for gas sensing. FTIR spectra confirms the cross linking between PANI and ZnS. The FESEM study also confirms formation of nanocomposites. Addition of ZnS NPs effectively reduces the agglomeration of PANI and makes the composites more uniform and compact. PANI-ZnS composites show better thermal stability and follows three-dimensional diffusion mechanisms. The gas (NH3) sensing is due to exchange of electron at the surface and is dependent on the gas concentration.

References

  1. Cho, S. I., & Lee, S. B. (2008)., Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application., Accounts of chemical research, 41(6), 699-707.
  2. Bhadra, J. and Sarkar, D. (2010)., Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite., Indian J. Phys., 84 (6), 693-697.
  3. Beek, W. J., Slooff, L. H., Wienk, M. M., Kroon, J. M., & Janssen, R. A. (2005)., Hybrid solar cells using a zinc oxide precursor and a conjugated polymer., Advanced Functional Materials, 15(10), 1703-1707.
  4. Sui, X. M., Shao, C. L., & Liu, Y. C. (2005)., White-light emission of polyvinyl alcohol∕ ZnO hybrid nanofibers prepared by electrospinning., Applied Physics Letters, 87(11).
  5. Olson, D. C., Piris, J., Collins, R. T., Shaheen, S. E., & Ginley, D. S. (2006)., Hybrid photovoltaic devices of polymer and ZnO nanofiber composites., Thin solid films, 496(1), 26-29.
  6. Xu, Z. X., Roy, V. A. L., Stallinga, P., Muccini, M., Toffanin, S., Xiang, H. F., & Che, C. M. (2007)., Nanocomposite field effect transistors based on zinc oxide/polymer blends., Applied Physics Letters, 90(22).
  7. Sen, R., Zhao, B., Perea, D., Itkis, M. E., Hu, H., Love, J., ... & Haddon, R. C. (2004)., Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning., Nano letters, 4(3), 459-464.
  8. Chen, Y. J., Cao, M. S., Wang, T. H., & Wan, Q. (2004)., Microwave absorption properties of the ZnO nanowire-polyester composites., Applied physics letters, 84(17), 3367-3369.
  9. Sharma, B. K., Khare, N., Dhawan, S.K. & Gupta, H.C. (2009)., Dielectric properties of nano ZnO-polyaniline composite in the microwave frequency range., J. Alloys Compd., 477, 370–373.
  10. Matsumura, M. and Ohno, T. (1997)., Concerted Transport of Electrons and protons across conducting Polymer Membranes., Adv. Mater., 9 (4) 357-359.
  11. Yoneyama, H., Takahashi, N., & Kuwabata, S. (1999)., Catalytic Asymmetric Reaction of Lithium Ester Enolates with Imines., J. Chem. Soc., Chem. Commun., 2(8) 716-719.
  12. Saha, S., Chaudhary, N., Mittal, H., Gupta, G., & Khanuja, M. (2019)., Inorganic–organic nanohybrid of MoS 2-PANI for advanced photocatalytic application., International Nano Letters, 9, 127-139.
  13. Ye, C., Fang, X., Li, G., & Zhang, L. (2004)., Origin of the green photoluminescence from zinc sulfide nanobelts., Applied Physics Letters, 85(15), 3035-3037.
  14. Fang, X., Bando, Y., Ye, C., Shen, G. & Golberg, D. (2007)., Shape- and Size-controlled Growth of ZnS Nanostructures., J. Phys. Chem. C 111 (24) 8469-8474.
  15. Wang, Y., Zhang, L., Liang, C., Wang, G., & Peng, X. (2002)., Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires., Chem. Phys. Lett., 357 (3-4) 314-318.
  16. Radhu S. and Vijayan C. (2011)., Observation of red emission in wurtzite ZnS nanoparticles and the investigation of phonon modes by Raman spectroscopy., Mater. Chem. Phys., 129(3), 1132–1137
  17. Shit, A., Chatterjee, S., & Nandi, A. K. (2014)., Dye-sensitized solar cell from polyaniline–ZnS nanotubes and its characterization through impedance spectroscopy., Phys. Chem. Chem. Phys., 16(37), 20079-20088.
  18. Parangusan, H., Bhadra, J., Ahmad, Z., Mallick, S., Touati, F., & Al-Thani, N. (2020)., Investigation of the structural, optical and gas sensing properties of PANI coated Cu–ZnS microsphere composite., RSC advances, 10(45), 26604-26612.
  19. Xia, Y., Wiesinger, J. M., MacDiarmid, A. G., & Epstein, A. J. (1995)., Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet / visible / near-infrared spectroscopic method., Chemistry of Materials, 7(3), 443-445.
  20. Ruokolainen, J., Eerika¨inen, H., Torkkeli, M.,Serimaa, R., Jussila M., & Ikkala, O. (2000)., Comb-shaped supramolecules of emeraldine base form of polyaniline due to coordination with zinc dodecyl benzenesulfonate and their plasticized self-organized structures., Macromolecules, 33, 9272–9276.
  21. Allehyani, S. H. A., Seoudi, R., Said, D.A., Lashin, A.R., & Abouelsayed, A. (2015)., Synthesis, Characterization, and Size Control of Zinc Sulfide Nanoparticles Capped by Poly (ethylene glycol)., J. Electron. Mater., 44(11), 4227-4235.
  22. Stejskal, J., Trchova´, M., Prokesˇ J., & Sapurina, I. (2001)., Brominated Polyaniline., Chem. Mater., 13(11), 4083–4086.
  23. Ummartyotin, S., Bunnak, N., Juntaro, J., Sain M., & Manuspiya, H. (2012)., Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder., Solid State Sci., 14 (3) 299–304.
  24. Nguyen, V., Lamiel, C., Kharismadewi, D., Tran, V., & Shim, J. (2015)., Covalently bonded reduced graphene oxide/ polyaniline composite for electrochemical sensors and capacitors., J. Electroanal. Chem., 758, 148–155. http://dx.doi.org/10.1016/j.jelechem.2015.10.023
  25. Huang, M. R., Li, X. G., & Yang, Y. (2000)., Oxidative polymerization of o-phenylenediamine and pyrimidylamine., Polymer Degradation and stability, 71(1), 31-38.
  26. Moon, H., Nam, C., Kim, C., & Kim, B. (2006)., Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition., Mater. Res. Bull., 41 (11), 2013–2017.
  27. Liu, Y., Li, Z., Zhong, W., Zhang, L., Chen, W., & Li, Q. (2014)., Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template., Nanoscale Res. Lett., 9(1), 389.
  28. Erdem, E., Karakisla, M., & Sacak, M. (2004)., The chemical synthesis of conductive polyaniline doped with dicarboxylic acids., Eur. Polym. J., 40 (4) 785–791.
  29. Palaniappan, S. and Narayana, B. H. (1994)., Conducting polyaniline salts: thermogravimetric and differential thermal analysis., Thermochim. Acta., 231(1), 91-97.
  30. Wu, X., Liu, M., & Jia, M. (2013)., A kinetic study on conductive polyaniline/graphite nanosheets composites thermal decomposition., Synth. Met., 185– 186, 145– 152.
  31. Ebrahimi-Kahrizsangi, R., & Abbasi, M. H. (2008)., Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA., Transactions of Nonferrous Metals Society of China, 18(1), 217-221.
  32. Akbar, A., Das, M., & Sarkar, D. (2020)., Room temperature ammonia sensing by CdS nanoparticle decorated polyaniline (PANI) nanorods., Sens. Actuators A Phys., 310, 112071.
  33. Aba, L., Yusuf, Y., Siswanta, D., & Triyana, K. (2014)., Sensitivity improvement of ammonia gas sensor based on poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) by employing doping of bromocresol green., Journal of Nanotechnology, 2014.
  34. Zhu, C., Cakmak, U., Sheikhnejad, O., Cheng, X., Zhang, X., Xu, Y., ... & Major, Z. (2019)., One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature., Nanotechnology, 30(25), 255502.