International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Two far infrared cavities nearby asymptotic giant branch stars at the galactic plane

Author Affiliations

  • 1Bhaktapur Multiple Campus, Tribhuvan University, Bhaktapur, Nepal
  • 2Central Department of Physics, Tribhuvan University, Kirtipur, Nepal

Res. J. Physical Sci., Volume 10, Issue (1), Pages 1-7, February,4 (2022)

Abstract

Dust color temperature, Planck function, visual extinction and their distributions of two far infrared cavities (named FIC06+00 and FIC21+48) found to be located within 30 around the AGB stars namely AGB0651+0031 and AGB2129+ 4919 at the galactic plane are presented. Dust color temperature of the core region of the cavities are found to be (20.5±1.2) K to (22.0±0.8) K and (22.1±0.1) K to (22.6±0.4) K respectively. The product of dust color temperature and visual extinction is found to be consistent in the order of 10-4. The distribution of Planck function along the extension (major diameter) and compression (minor diameter) is found to be non-uniform means dust particles are oscillating sinusoidally in order to get dynamical equilibrium which may be the cause of grain temperature. It further suggests that the dust particles in the cavities might not be in the thermal equilibrium possibly due to pressure driven events specially nearby AGB stars. Negative slope in transition from 25 µm to 60µm is our finding regarding far infrared spectral distribution in the cavities. It suggests that the number density of dust particles are found to be less than expected in 60 µm region.

References

  1. Jones, T. W., Ney, E. P., & Stein, W. A. (1981)., Pulsations Grain Condensation and Mass Loss in Long-Period Variable Stars., The Astrophysical Journal, 250, 324-326.
  2. Bowen, G. H. (1988)., The Mechanism of Mass Loss from Pulsating Cool Stars., The Astrophysical Journal, 329, 299 - 317.
  3. Cassara, L. P., Piovan, L., Weiss, A., Salaris, M., & Chiosi, C. (2013)., Detailed AGB evolutionary models and near-infrared colours of intermediate-age stellar populations: tests on star clusters., Monthly Notices of the Royal Astronomical Society, 436, 2824-2851.
  4. Habing, H. J. (1996)., Circumstellar envelopes and Asymptotic Giant Branch stars., Astronomy and Astrophysics Reviews, 7, 97-207.
  5. Herwig, F. (2005)., Evolution of Asymptotic Giant Branch Stars., Annu. Rev. Astron. Astrophysics, 43, 435-479.
  6. Villaver, E., Segura, G. G. & Manchado, A. (2002)., The Asymptotic Giant Branch., The Astrophysical Journal, 571, 880-900.
  7. Suh, K.W & Kwon, Y.J. (2009)., A Catalog of AGB Stars in IRAS PSC., Journal of the Korean Astronomical Society, 42, 81-91.
  8. Aryal, B., Rajbahak, C., & Weinberger, R. (2010)., A giant dusty bipolar structure around the planetary nebula ngc 1514., Monthly Notices of the Royal Astronomical Society, 402,1307-1312.
  9. Aryal, B., Rajbahak, C., & Weinberger, R. (2009)., Planetary nebulae NGC 6826 and NGC 2899: early aspherical mass loss?, Astrophysics and Space Science, 323, 323-328.
  10. Aryal, B., & Weinberger, R. (2006)., A new large high latitude cone-like far-ir nebula., Astronomy and Astrophysics, 448, 213-219.
  11. Jha, A. K., Aryal, B., & Weinberger, R. (2017)., Study of dust color temperature and dust mass distributions of four far infrared loops., Revista Mexicana de Astronomia y Astrofisica, 53, 467-476.
  12. Jha A. K. and Aryal B. (2018)., Dust color temperature distribution of two far infrared cavities at iris and akari maps., Journal of Astrophysics and Astronomy, 39(2), 7-16.
  13. Wood, D.O.S., Myers, P.C., & Daugherty, D.A. (1994)., IRAS images of nearby dark clouds., The Astrophysical Journal Supplement, 95, 457-501.
  14. Dupac, X., Bernard, J.P., Boudet, N., Giard, M., Lamarre, J.M., Meny, C., Pajot, F., Ristorcelli, I., Serra,G., Stepnik, B. & Torre, J.P. (2003)., Inverse Temperature Dependence of the Dust Submillimeter Spectral Index., Astronomy & Astrophysics, 404, L11-L15.
  15. Schnee, S.L., Ridge, N.A., Goodman, A.A. & Jason, G.L. (2005)., A Complete Look at the Use of IRAS Emission Maps to Estimate Extinction and Dust Temperature., The Astrophysical Journal, 634, 442-450.
  16. Beichman, C.A., Wilson, R.W., Langer, W.D., & Goldsmith, P.F. (1988)., Infrared limb brightening in the Barnard 5 cloud., The Astrophysical Journal Letters, 332, L81-L85.
  17. Gautam, A. K., & Aryal, B. (2019)., A study of low-latitude (|l| < 100) far infrared cavities., Journal of Astrophysics and Astronomy, 40, 16-26.
  18. Weiland, J. L., Blitz, L., Dwek, E., Hauser, M. G., Magnani, L., & Rickard, L. J. (1986)., Infrared cirrus and high-latitude molecular clouds., The Astrophysical Journal Letters, 306, L101-L104.