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Abstract  

The problem of heat transport in quantum well structures is investigated with the help of newer concept of equivalence of 

relaxation times and phonon line width (i.e., a phonon life time). The various contribution of scattering mechanism in 

nanostructure has been described by taking the electron-phonon, disorder and anharmonicity effects as a central problem. 

This has been dealt with the help of double time thermodynamic Green's function theory for phonon via a newly formulated 

Hamiltonian which consists of the contribution from i. unperturbed electrons, ii. unperturbed phonons, iii. isotopic impurities 

and iv. anharmonicities and v. electron-phonon. In the present work the phonon frequency line width is observed as a very 

sensitive quantity to study the transport phenomena in quantum well structure. 
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Introduction 

Quantum well heterostructures are key components of many 

optoelectronic devices, because they effectively increase the 

strength of electro-optical interactions by confining the carriers 

to small regions
1
. The transport properties in these low 

dimensional systems are an emerging field of research for 

experimentalists as well as for theoreticians
2
 due to its potential 

applications in electronic devices
3
. A quantum well or 

superlattice is an anisotropic structure, with a different thermal 

conductivity along the layers and in the cross-plane direction, 

i.e., in plane conduction and that perpendicular to the plane. It 

has been reported by various authors that the electron transport 

is determined by scattering of electrons from phonons, 

impurities, and interface roughness, while the conduction 

perpendicular to the plane transport are dominated by the 

resonant tunneling effect in addition to the in plane scattering
4
. 

The experiments and the theories for these two are very 

different which has been well reviewed in literature
 2,5

. The 

calculation of thermal conductivity including interference was 

first carried out by Hyldgaard and Mahan
6
 for a Si/ Ge 

superlattice, and for a variety of superlattices by some other 

authors
7
. It is observed that the thermal conductivity in the 

cross-plane direction is typically a factor of 10 smaller than it is 

in either of the layer materials. The study of thermal 

conductivity of superlattice for Ge- type structure was made by 

several authors using Boltzmann transport equation
8, 9

. Even in 

superlattice one can develop the concept of internal boundary, 

these internal boundaries even at the interface considerably 

reduce the phonon mean path which can be well explained on 

the basis of combined boundary scattering
10,11

. Callaway 

presented a phenomenological model
12

 which successfully 

explained the large amount of experimental data on thermal 

conductivity, but still there were some objections inaccessible 

from this model namely; i. the absence of phonon dispersion, ii. 

exclusion of phonon polarization indices due to isotropicity 

considerations and iii. additivity of inverse relaxation times for 

different scattering events (violation of Matthiessen’s rule 

which applies only to the independent scattering processes). 

Heat carriers either phonons or electrons in solids undergo 

through a large number of collision events (interactions) such as 

phonon-phonon interactions, defect (impurity) interactions, 

electron-phonon interactions, etc. These interactions give rise to 

anharmonic modes, impurity (gap-, local-, and/or resonance-) 

modes and impurity- anharmonicity interaction modes. As a 

result, these interactions offer sufficient thermal resistance and 

the conductivity of any specimen is greatly affected. In the 

present work, all the inadequacies pointed out above in the 

Callaway model have been removed by replacing the relaxation 

time by electron (phonon) line widths
13,14

 for quantum well 

structures. 

 

Formulation of Problem: The thermal conductivity of 

quantum well along with the role of various scattering 

mechanisms in the relaxation time approximation with a new 

view point can be investigated by using modified Callaway 

expression
12 

              (1) 

 

where  ,  and  are phonon velocity and 

phonon line width, respectively. Some provocative results show 

that under quite natural conditions the concept of additivity of 

inverse relaxation times (Matthiessen’s rule) loses its meaning 

and is only approximately valid. Without any loss of generality, 

to avoid this inadequacy one can use the concept of equivalence 
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of total relaxation time  (used in original Callaway 

model) with electron and phonon frequency line widths 

(i.e. quantum excitations directly related to the electron 

and phonon life time of a particular scattering event), i.e., 

                 (2) 

 

Induction of this concept eradicates the deficiencies introduced 

due to violation of Matthiessen’s rule and exclusion of 

dispersion relations. The concept of separate heat transport 

channels, i.e., electronic thermal conductivity  or phonon 

conductivity  is not insisted here, instead above expression is 

taken up as representative equation to describe the thermal 

conductivity and the decency of phenomena is centered in the 

configuration of .  

 

Hamiltonian: In order to investigate the quantum dynamics of 

the low dimensional system and to explore the various 

scattering mechanism underlying the microscopic mechanism of 

quantum well structure we have consider the Hamiltonian of the 

second quantized form as  
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In above equations ∗
−

∗
− −=+= kkkk AaaA  and 

∗
−

∗
− −=−= kkkk BaaB  represent the phonon field and 

momentum operators, respectively. Also, kg stands for the 

electron-phonon coupling constant and ( )∗
kk aa  and ( )∗

qq bb  are 

the phonon and electron Annihilation (creation) operators with 

wave vectors k  (for phonons) and q  (for electrons), 

respectively. The coefficients ( )21,kkC  and ( )21,kkD  depend 

upon change in mass and force constants due to substitutional 

point impurities, respectively and are given by Indu B. D.
13

 and 
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Where Nnc /=  and ( )MMMM −= '/'µ . Here ( ) McMcM /1'/1
0 −+=−  

is the effective atomic mass as seen by the phonon in the crystal, 

lR  label the equilibrium position of the thl  atom in the crystal, 

the symbol i  designates the position of impurity atom, ( )ke  is 

the polarization vector and ',llφ  represents the change in the 

harmonic force constant due to defects. For brevity, we have 

used index k  to denote kj , where j  labels the branch of the 

frequency spectrum. The anharmonicity coefficients 

( )ss kkkV L21,  are the Fourier transform of 
ths  order 

anharmonic force constant and are symmetric with respect to the 

pair of lattice vibration indices sk : 
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In the above expressions the prime over summation stands for 

the exclusion of the terms with 'll =  and ( ) ( )',
,, 21

lls
xxx sL

φ  are the 

expansion coefficients
13,14,15

.
 

 

Phonon Green’s Functions: In order to obtained the line shape 

of phonon spectrum let us consider the evaluation of the double 

time temperature dependent retarded Green’s function 

  

                (6) 

 

via Hamiltonian (2) with the help of quantum dynamical 

equation of motion technique and Dyson’s equation approach. 

This results in the following form
13

 

               (7) 

 

Where  is the renormalized phonon frequency and  

is the self energy operator or response function. 

               (8) 

 

Where  is the shift in the phonon frequency of the 

perturbed mode and is the real part of  (phonon self 

energy) and the imaginary part  is the phonon frequency 

line width at the half maximum of the phonon frequency peak is 

given by 

( ) ( ) ( ) ( ) ( )ωωωωω epAD
k

A
k

D
kk Γ+Γ+Γ+Γ=Γ                (9) 
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The various terms in Eq.(9) can be calculated with some tedious 

algebra16 in the form  
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In above expressions various symbols are defined as follows:  
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Results and Discussion  
Let us examine these Phonon (electron) line widths (life times) 

for the confinement in a quantum well structures. The phonon 

dispersion in quantum wells changes due to spatial phonon 

confinement in a quantum well induced by the miniboundaries 

developed inside it and reasonably affects the lifetimes. This 

results in ||εεε += n , where nε is the quantized phonon energy 

along z-axis and yx εεε +=|| with wave vector relation 

222
|| yx kkk += . The results given in earlier sections are for a bulk 

crystal and now can be extended to the quantum well structures 

using the appropriate confinement conditions in the following 

form:  
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With  ;   

 

Where  and  stand for the effective msass of electron and 

the surface area of well. In above results it is evident that the 

phonon occupancy depends on temperature and energies like nε  

and ||ε . Above results for relaxation times thus obtained can be 

further examined for a modified dispersion relations  

npnknvnε == h           (15a) 

 2
1

22
|||| )(

|||||| yxkkk kkvpkv +=== hhε            (15b) 

 

where np , ||p  , nv and ||v  are the phonon momentum and group 

velocities in nk and ||k directions, respectively. Further, a careful 

study of the terms like 
( )

2

1coth
kεεβ ±±

 and 
( )

2

21coth
kk εεεβ ±±±

, 

which are some sort of distribution functions are not simple 

quantities in the present context but are heavily influenced by 

the dispersion relations (15) for every 

21,;
||

kki
inii kkk =+= εεε and show highly anisotropic behavior 

in nk and ||k directions for the reason that nε  and ||ε exhibit 

quantized and continuous behavior thus changing the usual 

scenario of physics.  

 

Conclusion 

Present work is based on general formulation of life times of 

phonons for quantum well structures and is very much different 

from the usual results for a bulk crystalline solid. It emerges 

from present study that the life times (relaxation times) can be 

successfully studied with the help of new formulation which can 

draw a clear demarcation line between the bulk and the low 

dimensional systems as quantum confinement. The importance 

of anharmonic effects cannot be ignored because they explore 

the inevitable dependences of life times on temperature, 

frequency, impurity concentration and electron phonon 

coupling. This work however presents general results but can be 

exploited for model calculations of some specific quantum well 

structures with the help of heavy computational work in future. 
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