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Abstract 

In this paper, the length biased Nakagami distribution is considered for Bayesian analysis. The expressions for Bayes 

estimators of the parameter have been derived under squared error, precautionary and weighted loss functions by using 

quasi and inverted gamma priors. 
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Introduction 

Nakagami distribution is proposed by Nakagami
1
. The length 

biased Nakagami distribution was introduced by Mudasir et al.
2
. 

The density function of this distribution is given by 

 

 
2

1
1

2
222

0 0 0
1

2

k kk x
kk

f x; x e    ; x ,k ,

k

  

  
   
    

 
  
 

      (1)  

 

where θ and k are called scale and shape parameter respectively. 

 

The joint density function or likelihood function of (1) is given 

by 
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Taking log of equation (2), we have 
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Differentiating (3) with respect to θ and equating to zero, we get 
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Bayesian Approach of Estimation 

In this method generally we consider the squared error loss 

function (SELF) 
2

L ,   
    

    
   

.                       (5)  

The Bayes estimator under SELF, say, s


 is given by 

 S E 


 .                        (6)  

 

Zellner
3
 and Basu & Ebrahimi

4
 used the asymmetric loss 

function. Norstrom
5
 introduced new loss function known as 

precautionary which is given by 
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Under Precautionary loss function the Bayes estimator of θ is 

denoted by P


 and is obtained as 
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Weighted loss function
6
 is given as 

2

L ,
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Under weighted loss function the Bayes estimator of θ is 

denoted by W


 and is obtained as 
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Now, consider the following prior density which will be used to 

estimate θ.  

 

Quasi-prior: For the situation where we have no prior 

information about the parameter θ, we may use the quasi density 

as given by 

 1

1
0 0

d
g  ; , d , 


                     (11)  

 

where d = 0 leads to a diffuse prior and d = 1, a non-

informative prior. 

 

Inverted gamma prior: Generally, for the parameter θ, this 

density is used as prior distribution given by 
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Bayes Estimators under  1g 
 

The posterior density of θ under  1g  , on using (2), is given 

by 
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Theorem 1: Under SELF, the Bayes estimate of θ is obtained as 
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Proof: From equation (6), on using (13), 
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Theorem 2: Under precautionary loss, P


 is the Bayes 

estimate of θ, which is given as 
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Proof: From equation (8), on using (13), 
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Theorem 3: Under weighted loss W


 is defined as the Bayes 

estimate of θ given by 
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Proof: From equation (10), on using (13), 
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Bayes Estimators under  2g     

Under  2g  , the posterior density of θ, using equation (2), is 

obtained as 
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Theorem 4: Assuming the squared error loss function, the 

Bayes estimate of the parameter θ, is of the form 
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Proof: From equation (6), on using (17), 
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Theorem 5: Assuming precautionary loss, P


 is defined as the 

Bayes estimate of the parameter given by 
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Proof: From equation (8), on using (17), 
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Theorem 6: Assuming weighted loss, the Bayes estimate of θ is 

of the form 
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Proof: From equation (10), on using (17), 
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Conclusion 

In this paper, we have obtained a number of estimators of 

parameter of length biased Nakagami distribution. In equation 

(4) we have obtained the maximum likelihood estimator of the 

parameter. In equation (14), (15) and (16) we have obtained the 

Bayes estimators under different loss functions using quasi 

prior. In equation (18), (19) and (20) we have obtained the 

Bayes estimators under different loss functions using inverted 

gamma prior. In the above equation, it is clear that the Bayes 

estimators depend upon the parameters of the prior distribution. 
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