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Abstract

In this paper, the length biased Nakagami distribution is considered for Bayesian analysis. The expressions for Bayes
estimators of the parameter have been derived under squared error, precautionary and weighted loss functions by using
quasi and inverted gamma priors.
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Introduction

Nakagami distribution is proposed by Nakagami®. The length
biased Nakagami distribution was introduced by Mudasir et al.%.
The density function of this distribution is given by
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where 0 and k are called scale and shape parameter respectively.

The joint density function or likelihood function of (1) is given
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Taking log of equation (2), we have
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Differentiating (3) with respect to 6 and equating to zero, we get
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log f (x;6)=nlog

Bayesian Approach of Estimation

In this method generally we consider the squared error loss
function (SELF)
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The Bayes estimator under SELF, say, és is given by

Os = E(@). (6)

Zellner® and Basu & Ebrahimi* used the asymmetric loss
function. Norstrom® introduced new loss function known as
precautionary which is given by
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Under Precautionary loss function the Bayes estimator of 0 is

denoted by g’p and is obtained as
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Weighted loss function® is given as
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Under weighted loss function the Bayes estimator of 0 is
AN

denoted by Gw and is obtained as
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Now, consider the following prior density which will be used to
estimate 0.

(10)

Quasi-prior: For the situation where we have no prior
information about the parameter 6, we may use the quasi density
as given by
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where d = 0 leads to a diffuse prior and d = 1, a non-
informative prior.

Inverted gamma prior: Generally, for the parameter 6, this
density is used as prior distribution given by
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Bayes Estimators under 0, (9)

The posterior density of 6 under gl(ﬁ), on using (2), is given
by
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Theorem 1: Under SELF, the Bayes estimate of 0 is obtained as
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Proof: From equation (6), on using (13),
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Theorem 2: Under precautionary loss, @p is the Bayes
estimate of 6, which is given as
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Proof: From equation (8), on using (13),
2
(epj =E(0°)=[6"f (6/x)do
n , nk+%+d—l
(kzxi j % 7(nk+n+d72j lznlxiz
_ i je 2 Je i dog

F(nk+2+d —1) 0



Research Journal of Mathematical and Statistical Sciences ISSN 2320-6047

Vol. 9(2), 1-5, May (2021) Res. J. Mathematical and Statistical Sci.
n n
n nk+5+d—1 kz 2
n X
k X-2 _ _ A : i
( .221: : j F(nk+2+d 3) o Ou = )

- nk+Ned—3 nk +g+d -1

F(nk +2+d —1j (kixizj ]

i=1

Bayes Estimators under g, (6’)
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Bayes estimate of the parameter given by
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Theorem 6: Assuming weighted loss, the Bayes estimate of 0 is
of the form
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Conclusion

In this paper, we have obtained a number of estimators of
parameter of length biased Nakagami distribution. In equation
(4) we have obtained the maximum likelihood estimator of the
parameter. In equation (14), (15) and (16) we have obtained the
Bayes estimators under different loss functions using quasi
prior. In equation (18), (19) and (20) we have obtained the
Bayes estimators under different loss functions using inverted
gamma prior. In the above equation, it is clear that the Bayes
estimators depend upon the parameters of the prior distribution.
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