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Abstract 

In modeling of discrete data, common discrete distributions sometimes fail to fit the observed data due to over dispersion 

resulting from excessive zero counts. In those situations, Zero Inflated models act as

kind of data. When the data contains both high frequencies of zero and one counts,

poorly. As a result, this paper aimed at developing a new alternative model titled the Zero

Crack (ZOINBCR) distribution that would account for excessive zeroes and ones in dataset. Properties and generalizations 

of ZOINBCR distribution were provided. Its parameters were also obtained based on the

the Maximum Likelihood estimation procedure.
 

Keywords: Zero, One, Count, Negative Binomial distribution and Crack distribution.
 

Introduction 

Count data is found in many fields such as manufacturing, 

health, transport and many more. Analysis of this type of data is 

usually carried out using Poisson and Negative Binomial 

distributions. These discrete distributions at times poorly fit the 

observed count data due to over dispersion.

arises when the data is characterized lager variability that cannot 

be handled by the assumed distribution. In discussion about the 

consequences of over-dispersion Hinde
1
, Cameron

states that the standard errors may be underestim

consequently, the significance of individual parameters may be 

incorrectly assessed. 

 

From previous studies, Negative Binomial frequently performs 

better than Poisson distribution in dispersion cases but it can 

also at times perform poorly in over-dispersion cases. Moreover, 

Negative Binomial Crack (NBCR) distribution

alternative distribution that can also provide a better fit when 

modelling over-dispersed data. NBCR distribution was built 

through compounding Negative Binomial distribu

distribution. It is a general class that constitutes three special 

cases distributions being a mixture of Negative binomial with 

Inverse Gaussian (NBIG), Birnbaum Saunders (NBBS) and 

Length Biased Inverse Gaussian (NBLBIG).  

 

In their study, Perumean-Chaney
5
 recommended that when there 

is evidence of over-dispersion resulting from excess number of 

zeroes, standard models should be replaced with zero

models. Excess number of zeroes increases the sample size on 

the other side decreasing the total sum of observed data. This 

results in reduction in the mean value and an increase in 

dispersion index (variance to mean ratio). This violates the 
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In modeling of discrete data, common discrete distributions sometimes fail to fit the observed data due to over dispersion 

resulting from excessive zero counts. In those situations, Zero Inflated models act as best alternative models to handle that 

kind of data. When the data contains both high frequencies of zero and one counts, Zero-Inflated models can also perform 

poorly. As a result, this paper aimed at developing a new alternative model titled the Zero-One Inflated

would account for excessive zeroes and ones in dataset. Properties and generalizations 

of ZOINBCR distribution were provided. Its parameters were also obtained based on the Method of Moments

the Maximum Likelihood estimation procedure. 

Zero, One, Count, Negative Binomial distribution and Crack distribution. 

such as manufacturing, 

health, transport and many more. Analysis of this type of data is 

usually carried out using Poisson and Negative Binomial 

distributions. These discrete distributions at times poorly fit the 

observed count data due to over dispersion. Over dispersion 

arises when the data is characterized lager variability that cannot 

be handled by the assumed distribution. In discussion about the 

, Cameron
2
 and Cox

3 

states that the standard errors may be underestimated and, 

consequently, the significance of individual parameters may be 

From previous studies, Negative Binomial frequently performs 

better than Poisson distribution in dispersion cases but it can 

dispersion cases. Moreover, 

Negative Binomial Crack (NBCR) distribution
4 

is another 

alternative distribution that can also provide a better fit when 

dispersed data. NBCR distribution was built 

distribution and Crack 

distribution. It is a general class that constitutes three special 

cases distributions being a mixture of Negative binomial with 

Inverse Gaussian (NBIG), Birnbaum Saunders (NBBS) and 

 

recommended that when there 

dispersion resulting from excess number of 

zeroes, standard models should be replaced with zero-inflated 

models. Excess number of zeroes increases the sample size on 

g the total sum of observed data. This 

results in reduction in the mean value and an increase in 

dispersion index (variance to mean ratio). This violates the 

Poisson theoretical assumption of mean to variance equality. 

Excess number of zeroes in count data

fields. Production defects in manufacturing are usually modelled 

using Poisson, which sometimes fails due to excess number of 

zeroes
6
. Moreover, traffic and motor vehicle crashes studies, 

entomology studies, agricultural studies and

usually exhibit excess number of zero counts

 

In literature, researchers are striving to seek for alternative 

distributions to handle zero-inflated data. Modification of 

standard distributions seems to be providing a better fit under 

the condition over dispersion as a result of zero inflation. This 

modification included adding an extra parameter that 

specifically handles observed zero counts under predicted by the 

assumed standard distribution. As a result of this additional 

parameter, new distributions such as Zero Inflated Power 

Series
18

 (ZIPS) distributions were developed. Poisson, 

Binomial, Negative-Binomial, Geometric and Logarithmic 

Series distributions are members of this class. ZIPS distributions 

are frequently applied in many fields that work with count data 

containing excess number of zeroes. The importance of zero 

inflated models became significant when Lambert

Inflated Poisson (ZIP) distribution in modelling number of 

production defects in manufacturing process.

and Hall and Berenhaut
11 

further applied Zero Inflated Poisson/

Binomial distributions to model real life count data and these 

distributions provided a far much better fit when compared to 

Poisson and Binomial distributions. For further i

fit, Deng and Zhang
9 

decided to model the same data using 

another distribution modified to handle excessive one counts 

termed as Zero-One-Inflated Binomial (ZOIB) distribution. 

Their results
9
 marked ZOIB distribution as the best fitting 

model when compared to other competing models that were 
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In modeling of discrete data, common discrete distributions sometimes fail to fit the observed data due to over dispersion 

best alternative models to handle that 

Inflated models can also perform 

Inflated Negative Binomial 

would account for excessive zeroes and ones in dataset. Properties and generalizations 

Method of Moments procedure and 

Poisson theoretical assumption of mean to variance equality. 

Excess number of zeroes in count data is experienced in many 

fields. Production defects in manufacturing are usually modelled 

using Poisson, which sometimes fails due to excess number of 

. Moreover, traffic and motor vehicle crashes studies, 

entomology studies, agricultural studies and many more studies 

usually exhibit excess number of zero counts
7
.  

In literature, researchers are striving to seek for alternative 

inflated data. Modification of 

standard distributions seems to be providing a better fit under 

as a result of zero inflation. This 

modification included adding an extra parameter that 

specifically handles observed zero counts under predicted by the 

assumed standard distribution. As a result of this additional 

such as Zero Inflated Power 

(ZIPS) distributions were developed. Poisson, 

Binomial, Geometric and Logarithmic 

Series distributions are members of this class. ZIPS distributions 

ields that work with count data 

containing excess number of zeroes. The importance of zero 

inflated models became significant when Lambert
6
 applied Zero 

Inflated Poisson (ZIP) distribution in modelling number of 

production defects in manufacturing process. Moreover, Hall
10

 

further applied Zero Inflated Poisson/ 

to model real life count data and these 

distributions provided a far much better fit when compared to 

Poisson and Binomial distributions. For further improvement of 

decided to model the same data using 

another distribution modified to handle excessive one counts 

Inflated Binomial (ZOIB) distribution. 

marked ZOIB distribution as the best fitting 

when compared to other competing models that were 
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considered in the study. Recently, other alternative count data 

distributions were proposed as a way to provide alternatives to 

count data with excessive zero counts as different datasets 

adhere to different datasets. Some of those distributions are Zero 

Inflated Conway Maxwell Poisson (ZICMP)
12

, Zero Inflated 

Inverse Trinomial Distribution (ZIIT)
13

, Zero Inflated Negative 

Binomial
14 

Sushila (ZINBS)and Generalized Negative 

Binomial
15 

Shanker. Moreover, Saengthong
16

 extended NBCR 

to Zero Inflated Negative Binomial Crack (ZINBCR) 

distribution through inclusion of the zero-inflation parameter. In 

application to the data with high frequency of zero counts, CR 

provided a superb fit a real life dataset when it was compared to 

other competing distributions.  

 

Based on the strategy of inclusion of extra parameter, 

Alshkaki
17

 extended the ZIPS distributions through addition of 

the one-inflation parameter provide alternative distributions for 

a count data that is found to be characterized by excessive zero 

and one counts. These new distributions were then termed as 

Zero One Inflated Power Series (ZOIPS) distributions. Poisson, 

Binomial, Negative-Binomial, Geometric and Logarithmic 

Series distributions were its limiting cases under different 

conditions. Some structural properties of this general class were 

also provided along with parameter estimates that were derived 

based on Maximum Likelihood and Method of Moments 

procedures. In application, Zero-One Inflated Geometric 

Distribution (ZOIGD) was considered in analysis of a real life 

data that was previously studied by Edwin
18

. Results were 

compared to the one obtained by Edwin
18

 and it was found that 

ZOIGD provided a better fit than Zero Inflated Geometric 

Distribution (ZIGD). Furthermore, Alshkaki
19-21 

also provided 

mathematical properties of Zero-One Inflated Poisson (ZOIPD), 

Zero-One Inflated Negative Binomial (ZOINB), Zero-One 

Inflated Logarithmic Series (ZOILSD) and Zero-One Inflated 

Binomial (ZOIBD) distributions. Another real life application 

was carried out using ZOIPD distribution which performed 

better than the ZIP distribution. 

 

For that reason, this paper also aimed at developing an 

alternative distribution that is expected to handle variability 

from excessive zeros and ones in the data. Thus, in this paper, 

an extra parameter was added in ZINBCR distribution
16

 to make 

it more suitable for a real life count dataset characterized by 

excessive zeroes and ones. As a result, this extended ZINB-CR 

distribution was termed as "Zero-One Inflated Negative 

Binomial- Crack (ZOINBCR)" distribution. This model was 

expected to perform effectively in count data with a lot of 

zeroes and ones that cannot be handled by zero inflated 

distributions. ZOINBCR is made up three distributions mainly 

depending on whether a count is zero or one in a dataset. 

 

The paper was organized as follows: The next section portrayed 

properties and generalizations of NBCR and ZINBCR 

distributions. The section continued with introduction of the 

new distribution ZOINBCR together with provision of its 

mathematical properties such as the mean and the variance. Its 

parameters were estimated using Maximum Likelihood and 

Method of Moments estimation procedures. Last section deals 

with conclusion that included future research plans. 

 

Methodology 

Negative-Binomial Crack distribution (NBCR): The basic 

NBCR probability function with a random variable �is defined 

as 

 �(� = �)
=

��	
�
�� + � − 1       � � �  

�
��� ��� � (−1)�  ��� ���1 −  1 + 2"� + 2"�#$ 1 + 2"� + 2"�%1 − &�1 −  1 + 2"� + 2"�#'  ()�  � = 0,1,2, . . . ,

- 
 

From the p.m.f, the corresponding factorial moment is defined 

as:  

./01(�) = Γ(230)
Γ(2) 4∑  0��� �6� � (−1)�  789 :;�<= <=>?(0=�)�@ <=>?(0=�) × %1 − &�1 −

 1 − 2"(6 − �)#'B                                                                     (1) 

 

where �, �, " > 0 and 0 ≤ & ≤ 1. For proofs and other 

properties of this p.m.f see Saengthong
4
. NBCR distribution was 

obtained through mixing Negative Binomial(NB) and Crack 

distribution assuming that the parameter � of NB is 

exponentially linked with another parameter that follows Crack 

distribution. 

 

Special cases of NBCR distribution: From the p.m.f of NBCR 

distribution, when: i. & = 1, � = EF and " = FGE , H follows NBIG 

distribution with parameters �, . and I. ii. & = <>, H follows 

NBBS distribution with parameters �, � and ". iii. & = 0, H 

follows NBLBIG distribution with parameters �, � and ". 
 

Zero-Inflated Negative-Binomial Crack (ZINBCR) 
distribution: The ZINBCR probability distributionis presented 

as 

 �(� = �)
=

���
	�
�
J + (1 − J)  ��� %��1 − √1 + 2"�#'√1 + 2"� %1 − &�1 − √1 + 2"�#'  ()�  � = 0

(1 − J) �  

�
��� L�� + � − 1        � � ��� � (−1)� %1 − &�1 −  1 + 2"� + 2"�#'��� %��1 −  1 + 2"� + 2"�#' 1 + 2"� + 2"� B

 ()�  � = 1,2,3, . . . ,
- 

 

where J(0 < J < 1) is the zero inflation parameter that handles 

zeros when the Negative-Binomial underpredict them. The 

mean, variance and other properties of this distribution can be 

seen in a research study by Saengthong
16

. 
 

Zero-One-Inflated Negative-Binomial Crack distribution 

(ZOINBCR): In the data set that contains excess number of 

zero and one counts, let there be a mixture that assigns a mass of J to the extra zeros and a mass of O to the extra ones. 

Furthermore, a mass of (1 − J − O) assigned to the NBCR 

distribution leads to Zero-One-Inflated Negative-Binomial 

Crack (ZOINBCR) distribution. If we let a random variable � to 
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follow ZOINBCR distribution, its corresponding p.m.f is 

presented as 

 

\�(� = �) 

=
���
�	
���

J + (1 − J − O) L 789 %;�<=√<3>?2#'√<3>?2 %1 − &�1 − √1 + 2"�#'B  ()�  � = 0

O + (1 − J − O) ∑  <��� :(−1)� 2 789 %;�<= <3>?23>?�#' <3>?23>?� @                                             × %1 − &�1 −  1 + 2"(� + �)#'  ()�  � = 1(1 − J − O) ∑  
���� P�� + � − 1       � � ��� � (−1)�  789 %;�<= <3>?23>?�#' <3>?(23�) Q                                            × %1 − &�1 −  1 + 2"� + 2"�#'  ()�  � = 2,3,4, . . . ,

-      (2) 

 

where 0 < J < 1, 0 < O < 1 and 0 < J + O < 1. If O → 0, 

equation (2) reduces to ZINB-CR distribution. If Y∼ZOINB-

CR(�, �, ", &, �, J, O), some basic properties are: 

 

A factorial moment for this distribution is presented as:  ./01(�) = 

O + �  

∞

��< �  

�
��� U(−1)��0 ��� � �� + � − 1        � � (1 − J − O)��� %��1 −  1 + 2"� + 2"�#' 1 + 2"� + 2"�

× %1 − &�1 −  1 + 2"� + 2"�#'V          ()�  6 = 1,2, . . ., 
 

b) From the factorial moment, the Mean, Varianceand the 

Moment generating function of this distribution follows 

respectively as: 

 W(�) = O + �(1 − J − O) :�<=X(<=Y)# 789 �;(<=Y)#Y − 1@, where Z = √1 − 2" 
 [\�(�) = O(1 − �) + � − J 

 ]^(_)= J + O + (1 − J − O)��� %��1 − √1 + 2"�#'%1 − &�1 − √1 + 2"�#'√1 + 2"�
+ �  

∞

��< �  

�
��� L�� + � − 1        � � �� �� (−1)� %1 − & − & 1 + 2"� + 2"�'��� %�_��1 −  1 + 2"� + 2"�#' 1 + 2"� + 2"� B 

 

Parameter Estimation: This part entails the parameter 

estimation of  H`abc − de(�, �, ", &, �, J, O) distribution based 

on two methods; Moments procedure and Maximum Likelihood 

procedure.  

 

Method of Moments procedure: Parameter estimates were 

obtained through equating the moments computed from the 

sample about zero to corresponding population (distribution) 

moment. The first six moments of the ZOINB-CR distribution 

corresponding to the six parameters are given as: 

 W(�) = O + �/1 − J − O1 L�1 − &(1 − Z)# ��� ��(1 − Z)#Z − 1B 

 W(�>)= O + �(1 − J − O)(�+ 1) L�1 − &(1 − f)# ��� ��(1 − f)#f - -− 2�1 − &(1 − Z)# ��� ��(1 − Z)#Z + 1B 

 

W(�g)= O + (1 − J − O) L(�g + 3�> + 2�)�1 − &(1 − h)# ��� (−�h)h -
− (3�g + 6�> + 3�)�1 − &(1 − f)# ��� (−�f)  f -+ (3�g + 3�> + �)�1 − &(1 − Z)# ��� (−�Z)  Z − �gB 

 

W(�j) = O + (1 − J − O) L(4�j + 18�g + 26�> + 12�)�1 − &(1 − h)# ��� ��(1 − h)#h -  
+ (6�j + 18�g + 19�> + 7�)�1 − &(1 − f)# ��� ��(1 − f)#f  

-− (4�j + 6�g + 4�> + �)�1 − &(1 − Z)# ��� ��(1 − Z)#Z + �jB 
 

W(�n) = O + (1 − J − O) L(�n + 10�j + 35�g + 50�> + 24�)�1 − &(1 − p)# ��� ��(1 − p)#p - 
− (5�n + 40�j + 115�g + 140�> + 60�)�1 − &(1 − q)# ��� ��(1 − q)#q  

 + (10�n + 60�j + 135�g + 135�> + 50�)�1 − &(1 − h)# ��� ��(1 − h)#h  

 − (10�n + 40�j + 65�g + 50�> + 15�)�1 − &(1 − f)# ��� ��(1 − f)#f  

 -+ (5�n + 10�j + 10�g + 5�> + �)�1 − &(1 − Z)# ��� ��(1 − Z)#Z − �nB 

 

W(�r) = O + (1 − J − O)Γ(� + 6)
Γ(�) L�1 − &(1 − s)# ��� ��(1 − s)#s − 6�1 − &(1 − p)# ��� ��(1 − p)#p - 

  + 15�1 − &(1 − q)# ��� ��(1 − q)#q − 20�1 − &(1 − h)# ��� ��(1 − h)#h  

 -+ 15�1 − &(1 − f)# ��� ��(1 − f)#f − 6�1 − &(1 − Z)# ��� ��(1 − Z)#Z + 1B 
 

where Z = √1 − 2",f = √1 − 4",h = √1 − 6",q =√1 − 8", p = √1 − 10" and s = √1 − 12". Let yu(i =1,2, … , n) be a sample from ZOINB-CR and let 

y0′ = 1z �  

{
u�< �u0 ,    6 = 1,2, . . . ,6 

be their sample moments about the origin. From Central Limit 

Theorem, we know that moments computed from the sample 

provides reliable estimates of population moments. We obtain 

moment estimators by solving equations y< = W(�), y> =W(�>), yg = W(�g), yj = W(�j), yn = W(�n) and yr =W(�r). 

 

Maximum Likelihood procedure: Let yu(i = 1,2, … , n), 
represent a known sample of size n and moreover, let 

 d� =  1 + 2"� + 2"�,    � = 0,1,2, . . . , yu 
 

� = J + :(1 − J − O) �1 − &�1 − d�#�@ ��� %��1 − d�#'d�    for  yu = 0 

 

� = O + (r − J� − O�) �  

<
��� L(−1)� %1 − &�1 − d�#'��� %��1 − d�#'d� B      for yu = 1 

 

e = (1 − J − O) �� + yu − 1yu � � L�yu � � (−1)� %1 − &�1 − d�#'��� %��1 − d�#'d� B�
���     for    yu

= 2,3,4, . . ., 
 a� = � 1 if yu = 0 0  otherwise  ,   a< = � 1 if yu = 1 0  otherwise -- and  a> = � 1 if yu ≥ 2 0  otherwise - 
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From the above, Log-likelihood function of  H`abc −de(�, �, ", &, �, J, O) distribution is defined as: 

 

� = �  

{
u�< �a�� + a<� + a>e� 

 �)� � = �  

{
u�<  �)� �a�� + a<� + a>e� 

 

Differentiating log � w.r.t �, �, ", &, �, J, O; we get: 

 � �)� ��� = �  

{
u�<

(1 − J − O)a�� + a<� + a>e �a� U" :&d� − %1 − &�1 − d�#'%�d� + 1'@ ��� ���1 − d�#�d�g V- 
 

 +a< ��  

��
��� (−1)� P%1 − &�1 − d�#'%d�> − "�' + �"d� :& − �%1 − &�1 − d�#'@Q  ��� ���1 − d�#�d�g � 

 

+a> --U�� + �u − 1        �u � �  

��
��� ��u� � (−1)� :%1 − &�1 − d�#'%d�>�I(� + �u) − I(�)# − "(�d� + 1' + &"d�@ ��� ���1 − d�#�d�g V�� 

 

where I(6) = � ��� Γ(0)�0 = Γ
′(0)
Γ(0)  is the digamma function which 

can easily be computed by R software. 

 � �)� ��� = �  

{
u�<

(1 − J − O)a�� + a<� + a>e �a� U%1 − &�1 − d�#' ��� ���1 − d�#� �1 − d�#d� V- 
 

+a< U�  

��
��� (−1)�  � ��� ���1 − d�#� �1 − d�#d� V 

-+a> U�� + �u − 1        �u � �  

��
��� ��u� � (−1)� %1 − &�1 − d�#'  ��� ���1 − d�#� �1 − d�#d� V� 

 � �)� ��" = �  

{
u�<

(1 − J − O)a�� + a<� + a>e �a� U� ��� ���1 − d�#�d�> �& − /1 − &�1 − d�#1/�d� − 11d� �V- 
 

+a< U�  

��
��� (−1)� r(� + �) ��� ���1 − d�#�d�> �& − /1 − &�1 − d�#1/�d� − 11d� �V 

 

-+a> U�� + �u − 1       �u � �  

��
��� ��u � � (−1)� (� + �) ��� ���1 − d�#�d�> �& − %1 − &�1 − d�#'%�d� − 1'd� �V� 

 

 � �)� ��& = �  

{
u�<

(1 − J − O)a�� + a<� + a>e �a� U ��� ���1 − d�#� �d� − 1#d� V- 
 

+a< U�  

��
��� (−1)�3<  � �1 − d�#��� ���1 − d�#�d� V 

 

-+a> U�� + �u − 1       �u � �  

��
��� ��u � � (−1)�3<  ��� ���1 − d�#� �1 − d�#d� V� 

 � �)� ��J = �  

{
u�<

1a�� + a<� + a>e �a� U1 − %1 − &�1 − d�#'��� ���1 − d�#�d� V- 
 

+a< U�  

��
��� (−1)�3<  �%1 − &�1 − d�#'��� ���1 − d�#�d� V 

 

-+a> U�� + �u − 1        �u � �  

��
��� ��u � � (−1)�3< /1 − &�1 − d�#1��� ���1 − d�#� �1 − d�#d� V� 

 

 � �)� ��O = �  

{
u�<

1a�� + a<� + a>e �−a� U%1 − &�1 − d�#' ��� ���1 − d�#�d� V- 
 

+a< U1 + �  

��
��� (−1)�3< � ��� ���1 − d�#�d� V 

 

-+a> U�� + �u − 1       �u � �  

��
��� ��u � � (−1)�3< %1 − &�1 − d�#'��� ���1 − d�#� �1 − d�#d� V� 

 

Conclusion 

We introduced a new distribution called ZOINB-CR distribution 

which was obtained through additional parameter which 

accounts for excess number of ones in count data. The mean, 

variance, the factorial moment and the mgf of this distribution 

was provided. Parameter estimation was also implanted using 

the Moments procedure and the maximum likelihood procedure. 

For future work, usefulness of this distribution would be 

investigated using simulated and real data set with a higher 

number of zeros and ones. 
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