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Abstract 

The application of nonparametric model calibration estimators in multistage survey sampling has been studied by several 

authors with the cluster level auxiliary information assumed completely available for each cluster. The reasoning behind 

model calibration is that if the calibration constraints are satisfied by the auxiliary variable, then it is expected that the fitted 

values of the variable of interest should satisfy such constraints too.  In this paper, we have considered a case of auxiliar

information present at two levels. We derive estimators by treating the calibration problems at both levels as optimization 

problems and solving them by the method of penalty functions. 

they do not fail in the event the model is misspecified for the data.
 

Keywords: Optimization problem, semiparametric model
 

Introduction 

The nonparametric and semiparametric modeling techniques 

have become popular due to the failings of parametric modeling 

when a model is misspecified. Given a sample 

observations niyxZ iii ,....,2,1),,,( =  from some population 

U of size say N, of interest is to find an estimator for 

),()( iii ZxgyE = of a missing population value. Once the 

missing values are imputed, an estimate of the total of the 

population of the dependent variable Y can then be obtained.  

Breidt et al
1
 considered a super population regression model, 

given by 

 

( ) ( ) ( )
i i i i i

E y g x Z x Zξ µ β= , = +
  

 

and used a sample estimate of the form ˆ
i

g = +

ˆ ( )
i

xµ  obtained by local polynomial nonparametric method. 

Accordingly, they obtained the following estimator for 

population total 

 

ˆ
ˆ i i

reg i

U s i

y g
y g

π

−
= +∑ ∑

   
 

They found that the estimator shares some desirable properties 

with the fully parametric regression estimators. It is location and 

scale invariant, and it is internally calibrated for both the 

parametric and the nonparametric components, in the sense that 

ˆ
reg iU

X x=∑  and ˆ
reg iU

Z Z=∑ . The estimator was shown to be 
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authors with the cluster level auxiliary information assumed completely available for each cluster. The reasoning behind 

on is that if the calibration constraints are satisfied by the auxiliary variable, then it is expected that the fitted 

values of the variable of interest should satisfy such constraints too.  In this paper, we have considered a case of auxiliar

n present at two levels. We derive estimators by treating the calibration problems at both levels as optimization 
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The nonparametric and semiparametric modeling techniques 

have become popular due to the failings of parametric modeling 

when a model is misspecified. Given a sample s  of n  triple of 

from some population 

of size say N, of interest is to find an estimator for 

of a missing population value. Once the 

missing values are imputed, an estimate of the total of the 

population of the dependent variable Y can then be obtained.  

considered a super population regression model, ξ  

             
(1) 

ˆˆ( )i ix Zµ β= + with 

obtained by local polynomial nonparametric method. 

Accordingly, they obtained the following estimator for 

            

 (2) 

They found that the estimator shares some desirable properties 

ric regression estimators. It is location and 

scale invariant, and it is internally calibrated for both the 

parametric and the nonparametric components, in the sense that 

. The estimator was shown to be 

design consistent with the rate

1( )
reg i p nU

y y O= +∑  . 

 

Kihara et al
2
 extended the work of Breidt et al

calibration in cluster sampling with auxiliary info

available at both element and cluster levels and missing values 

fitted nonparametrically and semiparametrically by use of 

penalized splines. The work by Kihara

problem as an optimization problem where missing values were 

fitted parametrically. Further work by Kihara

calibration problem, in one stage sampling, as an optimization 

problem with missing values fitted nonparametrically and 

semiparametrically. 

 

In this study, the work by Kihara et al

the two levels calibration problems, in cluster sampling, as 

constrained nonlinear optimization problems which we convert 

to unconstrained optimization problems.  We solve the resulting 

problems by penalty function method to obtain the weights (at

both cluster and cluster element levels) assigned to sample 

observations from some chi- square distance measures.

 

Two Level Model Calibration in cluster Sampling

Consider a population U  partitioned into 

size
i

N  and let C be the population of the clusters. For all 

clusters included in the sample s , two independent vectors, 

and
i

z are available where 
i

z  is a categorical vector.  For 

simplicity, we let 
i

x  be a scalar. At stage one, a sample

size m  consisting of clusters, is selected from 
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design consistent with the rate n , in the sense that 

extended the work of Breidt et al
1
 to include model 

calibration in cluster sampling with auxiliary information 

available at both element and cluster levels and missing values 

fitted nonparametrically and semiparametrically by use of 

penalized splines. The work by Kihara
3 

considered calibration 

problem as an optimization problem where missing values were 

ted parametrically. Further work by Kihara
4 

considered the 

calibration problem, in one stage sampling, as an optimization 

problem with missing values fitted nonparametrically and 

In this study, the work by Kihara et al
2
 is extended by treating 

the two levels calibration problems, in cluster sampling, as 

constrained nonlinear optimization problems which we convert 

to unconstrained optimization problems.  We solve the resulting 

problems by penalty function method to obtain the weights (at 

both cluster and cluster element levels) assigned to sample 

square distance measures. 

Two Level Model Calibration in cluster Sampling 

partitioned into M  clusters each of 

be the population of the clusters. For all 

, two independent vectors, 
i

x  

is a categorical vector.  For 

be a scalar. At stage one, a sample s of 

consisting of clusters, is selected from C  as per a fixed 
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design 1( )p . . Let ( )
i

p i sπ = ∈  and ( )
ij

p i j sπ = , ∈  be the 

marginal and joint cluster inclusion probabilities respectively. 

From each of the  sampled cluster i s∈ , a sample 
i

s  and size 

in consisting of cluster elements is selected as per a fixed  

design (.)ip with the respective marginal and joint element 

inclusion probabilities as ( )
k i i

p k s i sπ / = ∈ / ∈  and 

( )
kl i i

p k l s i sπ / = , ∈ / ∈ . We assume invariance and 

independence of the second stage design. Let 

( ) 1 2
i i i i

t g x Z i … Mε= , + , = , , , , where the smooth function

( )
i i

g x Z,  is the fitted model mean for the ith cluster total. For 

simplicity we write ig for ( )
i i

g x Z, .  Let ˆ ˆ s i
i s

t t
∈

 =    be 

the vector of cluster total estimators 
î

t  obtained from the 

sampled clusters. 

 

Now, consider the case where there is also auxiliary information 

known at element level such that for each element in the ith 

cluster, a nonparametric variable 
ik

x  and a categorical vector 

ik
Z  are available. Suppose that not all element values of the 

variable of interest in a given cluster are available and have to 

be imputed. We derive a model calibrated estimator of cluster 

total. We define the semiparametric estimator for ( )
11 ik

yξΕ as 

 

βµ ˆ)(ˆ),(ˆˆ
ikikikikik Zxzxgg +==

             (3) 

 

Where: )(ˆ
ikxµ and ikx are defined for every element k in the 

cluster iC . For simplicity, we write ikµ̂ for )(ˆ
ikxµ . We 

propose a model calibrated estimator of cluster total to be 

 

ˆ ˆ

i

i ik ik

k s

t w y
∈

=∑                 (4) 

 

with the weights ikw derived in such a way that the chi square 

distance measure below is minimized as  discussed by Deville 

and Sarndal
5
. 

 

( )
2

i

ik ik

s

k s ik ik

w d

q d∈

−
Φ =∑

               

 (5) 

 

The distance measure is minimized subject to the constraints 

i

ik i

k s

w N
∈

=∑  and ∑∑
∈∈

=
ii Ck

ik

sk

ikik ggw ˆˆ  proposed by Wu and 

Sitter
6
. We have the optimization problem below similar to the 

one of Kihara
4
. 













=−=

=−=

−
=Φ

∑

∑∑

∑

∈

∈∈

∈

0)(

0ˆˆ)(

)(
min

2

1

2

i

n

sk

iks

Ck

ik

sk

ikiks

sk ikik

ikik

s

Nwwl

andggwwl

tosubject
dq

dw
imize

i

ii

i

            

 (6) 

 

We construct an unconstrained problem as given below. See 

Rao
7
. 

 

( )
222

)(ˆˆ)(),( 







−+








−+

−
= ∑∑∑∑

∈∈∈∈
i

sk

ika

Ck

ikik

sk

ika

sk ikik

ikik
as NwrHggwrH

dq

dw
rw

iiii

φ

  

 (7) 

 

Now, )( arH is a function of some penalty ar . 

 

Differentiating (7) partially with respect to 
ikw  we get 

         

                                                                                                  (8) 

 

Equating (8) to zero and solving for
ikw  we have 

( )ikikika

kj
sj Cj

ijikijikijikikaik

ik
dqgrH

ggggwdqrHd

w
i i

)1)ˆ(()(1

]1ˆˆ[]1ˆˆ[)(

2 ++

















−−+−

=

∑ ∑
≠
∈ ∈

  

  (9) 

 

Thus, a semiparametric estimator of the cluster total is given as 

( )

( )∑

∑ ∑

∑∑

∈

≠
∈ ∈

∈∈

++

















−−+

−

++
==

i

i i

ii

sk ikikika

kj
sj Cj

ijikijikijikikika

sk ikikika

ikik

sk

ikiki

dqgrH

ggggwydqrH

dqgrH

dy
ywt

)1)ˆ(()(1

]1ˆˆ[]1ˆˆ[)(

)1)ˆ(()(1
ˆ

2

2

   

 (10) 

 

Now, having estimated the cluster totals, we then derive a 

population total estimator using the estimated cluster totals and 

the auxiliary information available at cluster level. With iĝ  and 

ix  defined for every Ci ∈ , we propose a semiparametric 

model calibrated population total estimator as 

 

i

si

isp twy ˆ∑
∈

=
               (11) 

with iw obtained in such a way that the chi square distance 

measure below is minimized. 
  

∑
∈

−
=Φ

si ii

ii

dq

dw
2)(              (12) 

( )








−+








−+

−
= ∑∑∑

∈∈∈
i

sk

ika

Cj

ij

sj

ijijika

ikik

ikik

aik NwrHggwgrH
dq

dw
rw

iii

)(2ˆˆˆ)(2
2

),(1φ
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The distance measure is minimized Subject to the constraints

Mw
si

i =∑
∈

 and ∑∑
∈∈

=
Ci

i

si

ii ggw ˆˆ . Again,
1

i i
d π −=  and 

i
q are 

some known positive constants uncorrelated with
i

d . We 

therefore have the optimization problem 

 













=−=

=−=

−
=Φ

∑
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∑

∈

∈∈

∈

0)(

0ˆˆ)(

)(
min

2

1

2

Mwwl

andggwwl

tosubject
dq

dw
imize

si

i

Ci

i

si

ii

si ii

ii

       (13) 

 

We convert (13) to an unconstrained optimization problem 

below 

 

( )
222

)(ˆˆ)(),(











−+






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
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−+

−
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∈∈∈∈

MwrHggwrH
dq

dw
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si

ib

Ci

ii

si

ib

si ii

ii
bφ

 (14) 

 

Where: br is some penalty. 

 

Differentiating (14) partially with respect to 
iw  we get 

 

                (15) 

 

 

We equate (15) to zero and solve for
iw  to obtain the following. 

( )
iiib

ij
sj Cj

jijijiibi

i
dqgrH

ggggwdqrHd

w
i

)1)ˆ(()(1
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       (16) 

 
Now we have a semiparametric estimator of the population total 

obtained as 
 

( )

( )∑

∑ ∑

∑∑

∈

≠
∈ ∈
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


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 (17) 

 

When the vectors 0== iki ZZ , then )(ˆ),(ˆ
ikikik xzxg µ=

and )(ˆ),(ˆ
iii xzxg µ= . If we let ikikx µµ ˆ)(ˆ = and

iix µµ ˆ)(ˆ = , we have a nonparametric model calibrated 

estimator for cluster total as 
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 (18) 

 

and the nonparametric population total estimator becomes 

 

( )
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∑ ∑

∑∑

∈

≠
∈ ∈

∈∈
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
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
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−
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si iiib
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si iiib
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si
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)1)ˆ(()(1
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ˆ

2
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µ

µµµµ
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       (19) 

 

For a semiparametric case, to obtain the within cluster weights

),...,2,1(, iik nkw = , we   solve the penalty function (7) as an 

unconstrained minimization problem. Starting with some initial 

guess for ikw and ar , we repetitively improve on the guess until  

optimal values are obtained. Given that our constraints are 

equality constraints, our initial guess for ikw
 
is not required to 

be feasible as explained in Kihara
3
. We make use of the Newton 

method discussed in Rao
7
. 

 

Let { }
iiniii wwwW ,...,, 21=  be our set of weights.  We wish to 

derive 
*

iW so that 

 

[ ] 0)),(),...,,()( 1

* =
′′′= ainaii rwrwW

i
φφϑ            (20) 

 

We let ilW  be the initial approximation of 
*

iW  so that

iili VWW +=*
. By Taylor’s series expansion of )( *

iWϑ we get 

 

......)()()( * ++=+= iWiliili VJWVWW
il

ϑϑϑ
           (21) 

 

If we ignore the higher order terms in (21) and set 

0)( * =iWϑ , we get 

 

0)( =+ iWil VJW
il

ϑ
              (22) 
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The matrix ilWJ  consists of the second order derivatives of the 

penalty function (7) evaluated at ilW . In general, the
ilwJ

matrix is a ii nbyn  matrix.  Let k  and j denote the rows and 

columns respectively. 

 

Then, 
ilwJ has the elements )1)ˆ)(((2

2 2 ++ ika

ikik

grH
dq

 in the 

diagonal and the elements )1ˆˆ)((2 +ijika ggrH elsewhere.  If 

ilWJ  is invertible, then, from the linear equations (22) we have 

 

)(1

ilWi WJV
il
ϑ−=

              (23) 

 

The iterative procedure below is used in finding the enhanced 

approximations of 
*

iW . 

 

)(1

)1( ilWilli WJWW
il
ϑ−

+ −=
             (24) 

 

The sequence of the points )1(21 ,....,, +liii WWW  will eventually 

converge to the actual solution
*

iW . 

 

 Let  
*

iaW be the minimum value of 
*

iW  calculated  for a given 

penalty ar , we calculate a sequence of minimum points 
*

)1(

*

2

*

1 ,....,, +aiii WWW  for the penalties 121 ,....,, +arrr   until 

*

)1(

*

+= aiia WW  or ),(),( 1+= asas rwrw φφ to a given degree of 

accuracy. The penalty values are such that the initial value  

01 >r  and aa crr =+1 , where 1<c .  ∞→)( arH as 0→ar .
  

 

In nonparametric case, 
ikµ̂ replaces

ikĝ  so that 
ilWJ matrix is 

then a ii nbyn  matrix with diagonal elements  

)1)ˆ)(((2
2 2 ++ ika

ikik

rH
dq

µ  and the elements )1ˆˆ)((2 +ijikarH µµ

elsewhere. 

 

We next obtain the cluster level weights ),...,2,1(, miwi = . 

Considering the semiparametric case, we   solve the penalty 

function (14) as an unconstrained minimization problem. Let the 

set of weights be { }mi wwwW ,...,, 2=  .  We require 
*

W such 

that 

 

[ ] 0),(),...,,()( 1

* =
′′′= bmb rwrwW φφϑ                         (25) 

We let iW  be the initial estimate of 
*

W  so that VWW i +=*
. 

The Taylor’s series expansion of )( *Wϑ now gives 
 

......)()()( * ++=+= VJWVWW
iWii ϑϑϑ

           (26) 

 

Again, we neglect the higher order terms in (26) and set 

0)( * =Wϑ to arrive at 

 

0)( =+ VJW
iWiϑ

              (27) 

 

Where: iWJ  is the mbym  matrix of second order 

derivatives of the penalty function (14) evaluated at  iW .  Let 

i  and j be the row and column counters respectively. The 

matrix  
iWJ  has elements )1)ˆ)(((2

2 2 ++ ib

ii

grH
dq

 in the 

main diagonal and the elements )1ˆˆ)((2 +jib ggrH elsewhere. 

For nonparametric case, the matrix has   )1)ˆ)(((2
2 2 ++ ib

ii

rH
dq

µ  

as diagonal elements and the elements )1ˆˆ)((2 +jibrH µµ

elsewhere.  

 

We now have the iterative procedure below to find the improved 

estimates of 
*

W . 

 

)(1

1 iWii WJWW
i
ϑ−

+ −=
              (28) 

 

Letting 
*

bW  be the minimum value of 
*

W  calculated for a 

given penalty br , we again calculate a sequence of minimum 

points 
*

1

*

2

*

1 ,....,, +bWWW  for the penalties 121 ,....,, +brrr   until 
*

1

*

+= bb WW  or ),(),( 1+= bb rwrw φφ to a specified degree of 

accuracy. The penalty values for br may be set in similar 

manner as ar described above. 
 

Local Polynomial Method of Fitting the Missing 

Values 

The aim in local polynomial regression is to minimize the 

degree q polynomial 

{ } )()()...(

2

1

10 ij

n

j

q

ijpiji xxKxxxxy −−−−−∑
=

βββ
     

 (29) 

with respect to ),...,,( 10 pββββ =  where
0β estimates 

iix µµ =)( while 
pββ ,...,1

estimates higher order derivatives of 
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iµ  . The kernel function (.)K  is discussed in Simonof
8
. From 

the local polynomial smoother, the nonparametric fit of the 

cluster totals can be obtained as 

 

 
s

T

sii tS ˆˆ =µ                (30) 

 

Where: si

T

sisisi

T

si

TT

si XXXS ϖϖε 1)( −= , ,)0,...,0,1( T=ε

,)ˆ,...,ˆ,ˆ(ˆ
21

T

ns tttt =  )),/)((),...,/)((( 1 hxxKhxxKdiag inisi −−=ϖ  

h  is the bandwidth and the matrix siX has the rows 

njxxxx
q

ijij ,...,2,1],)(,...),(,1[ =−− . A discussion of 

this is given by Breidt and Opsomer
9
. 

 

 In a manner similar to that of Breidt and Opsomer
9
, we obtain a 

semiparametric fit for cluster totals as 

 

ss

T

sss

T

si

T

ss

T

sii tSZZSZZZYSg ˆ)()ˆ(ˆ 1−+−= β                      (31) 

 

where ],...,2,1,[ niSS sis == , ss

T

sss

T

s YSZZSZ
1)(ˆ −=β  and 

,...],[ 21 ZZZs = is the vector of categorical variables. 

 

The nonparametric fit of the elements within clusters is then 

obtained as 

 

si

T

sikik YS=µ̂                (32) 

 

Where: sik

T

siksiksik

T

sik

TT

sik XXXS ϖϖε 1

1 )( −= ,

,)0,...,0,1(1

T=ε ,),...,,( 21

T

iniisi i
yyyY =  

)),/)((),...,/((( iikinikijsik hxxKhxxKdiag
i
−−=ϖ  ih  

is the bandwidth within the ith cluster and sikX is a matrix with 

rows i

q

ikijikij njxxxx ,...,2,1],)(,...),(,1[ =−− .  

 

The semiparametric fit of the elements within clusters is 

similarly obtained as  

 

sisx

T

sisisx

T

siiki

T

sisi

T

sikik YSZZSZZZYSg
1)()ˆ(ˆ −+−= β

        
 (33) 

 

Where ],...,2,1,[ isiksx nkSS == , 
sisx

T

sisisx

T

sii YSZZSZ 1)(ˆ −=β  

and ,...],[ 21 iisi ZZZ = is the vector of categorical variables in 

the ith cluster. 

 

Results 

We analyze the performance of the derived estimators in 

comparison to the performance of Horvitz Thompson design 

estimator ∑
=

=
n

i

ihiht dty
1

ˆ of the population total, where  

ik

sk

ikhi ydt
i

∑
∈

=ˆ  is the cluster total estimator. In Figures-1 to 4, 

the sample sizes given are for one stage sampling. That is, sizes  

m  of the samples of clusters.  The size in of the sub sample 

within a cluster was set as 0.25 of m . 

 

Semiparametric Estimator Results: We simulated a 

population size 300 of independent and identically distributed 

variable X  using uniform (0.1) and a categorical matrix Z . 

For each generated 
i

x  and vector
i

Z  , 100
i

N =  element 

values were generated as follows.  

 

{ } )1.0,0(,
),(

Niid
NN

Zxg
y ik

i

ik

i

ii
ik ε

ε
+=                       (34) 

 

Where:
ik

y  is the kth element in the ith cluster and ( )
i i

g x Z,  , 

which we simply write 
i

g  is the mean function for the cluster 

total 
i

t . This generating function is an adaptation to 

semiparametric modeling of the generating function by 

Montanari and Ranalli
10

. We considered the linear mean 

function xZ 52 ++′β  and the function 
2)52( xZ ++′β

which is quadratic, for auxiliary information at cluster level. For 

simplicity, within each cluster, the auxiliary information ikx at 

element level was generated using the linear and quadratic mean 

functions and working backward in a similar manner as in 

Kihara
11 

to obtain the following. 

 

2 '

5

ik ik
ik

y z
x

β− −
=                (35) 

 

And 

 

2 '

5

ik ik

ik

y z
x

β− + −
=

   

          (36) 

 

Where: ikZ is the matrix 1 2 3( , , )i i iZ Z Z , 1iZ  is a matrix of 1s, 

2iZ  is a matrix of 2s, 3s and 4s, while 3iZ  is a matrix of 5s,6s, 

and 7s. β
 
is the matrix (1, 2,3) . 

 

 At stage one, samples of clusters of size m were generated by 

simple random sampling. At stage two, within each of the 

selected clusters, sub samples of size in  were generated by 

simple random sampling.  For any combination of sample sizes 

m  and in , 5 samples were generated at stage one and 10 
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samples at stage two. We used local polynomial equation (33) in 

fitting cluster elements and equation (31) in fitting cluster totals 

and in each case the bandwidths are chosen to be a quarter of 

the respective range in the data. In our study we used a 

polynomial of degree 1(local linear) and used the standard 

kernel defined as 1),1(75.0)( 2 ≤−= vvvK . 

 

In estimating cluster totals by the penalty function method, our 

initial penalty constant for ar  was set at 00010.01 =r . The 

convergence criteria considered was 
*

)1(

*

+= aiia WW  and

),(),( 1+= asas rwrw φφ to six decimal places. Using the 

estimated cluster totals, we generated estimates of the 

population total.  Again, we set the initial penalty value for br   

at 00010.01 =r  and the convergence criteria as 
*

1

*

+= bb WW  and 

),(),( 1+= bb rwrw φφ  to six decimal places.  We compared the 

performance of our estimator spy  with the Horvitz Thompson 

estimator hty . 

 

We let ∑ ∈
=

Ci it ty  be the actual population total where

∑ ∈
=

iCk iki yt is the actual cluster total. The errors in the 

estimation are the differences spt yy −  and htt yy −  . 

 

Results on Linear Data: Looking at table (1), the errors 

indicate that the performances of both estimators spy  and hty  

are indistinguishable, which indicates spy is as reliable as the 

popular design estimator hty .  Convergence at both stage 1 and 

stage 2 occurs at the initial values of the penalties. From Figure-

1, it can be seen that, from the ratio

)(var/)(var htsp yianceyiance , spy  is a bit more variable 

than Horvitz Thompson estimator hty . 

Table-1:  Results of spy  on Linear Data. 

sample serial number 1 2 3 4 5 

sample sizes m and ni 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50 

ty  10637.07767 10637.07767 10637.07767 10637.07767 10637.07767 

spy  10655.64312 10591.80901 10776.77585 10657.06451 10616.70892 

hty  10713.64452 10551.51204 10587.80962 10579.51231 10722.72513 

spt yy −  -18.56545 45.26866 -139.69818 -19.98684 20.36875 

htt yy −  -76.56685 85.56563 49.26805 57.56536 -85.64746 

ar  0.00010 0.00010 0.00010 0.00010 0.00010 

br  0.00010 0.00010 0.00010 0.00010 0.00010 

 

 

Figure-1: Fraction of )(var/)(var htsp yianceyiance  on Linear Data 
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Results on Quadratic Data: Looking at table (2), again the 

errors in the estimation indicate that the performances of  spy  

and hty are indistinguishable. This serves to show robustness of 

the estimator spy which is in fact a misspecified model for 

quadratic data.  In figure (2), we see that, from the ratio

)(var/)(var htsp yianceyiance , the estimator spy  has 

bigger variance than hty . This is expected since the data is from 

a quadratic function, while spy  uses a local linear function in 

fitting the values. 

 

Nonparametric Estimator Results: Using R software 

program, and using uniform (0, 1), a population of the variable 

x  was simulated.  Using the auxiliary variable x  , two 

populations for the dependent random variable y were 

generated as   xy 52 +=  and
2)52( xy += . We used local 

polynomial equation (30) to fit cluster totals and equation (32) 

to fit element values within a cluster.  The cluster element 

values were generated as  

 

)1.0,0(}{,
)(

Niid
NN

x
y ik

i

ik

i

i
ik ε

εµ
+=             (37)

Table-2: Results of spy  on Quadratic Data. 

sample serial number 1 2 3 4 5 

sample size m and ni 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50 

ty  16054.39204 16054.39204 16054.39204 16054.39204 16054.39204 

spy  16077.78872 16389.73764 15525.60252 15845.52393 15936.92781 

hty  15706.03516 16389.95682 16259.14548 16174.82744 16081.07106 

spt yy −  -23.39668 -335.3456 521.78952 208.86811 117.46423 

htt yy −  347.60332 -335.56478 -204.75344 -120.4354 -26.67902 

ar  0.00010 0.00010 0.00010 0.00010 0.00010 

br  0.00010 0.00010 0.00010 0.00010 0.00010 

 

 

Figure-2: Fraction of )(var/)(var htsp yianceyiance  on Quadratic Data. 
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The respective auxiliary information was regenerated as shown 

below for the linear and quadratic mean functions. 

 

5

2−
= ik

ik

y
x                 (38) 

 

And 

 

5

2−
= ik

ik

y
x                 (39) 

 

Results on Linear Data: From Table-3, both estimators npy  

and hty  have small errors and consistently, npy  has the smaller 

error margins. This can be explained by the fact that the data is 

linear which implies that npy is correctly specified for the data. 

From Figure-3, we see that the ratio 

)(var/)(var htnp yianceyiance  increases as the sample size 

grows up to a constant of about 0.37.  Thus, the variance for npy

is consistently lower than that of hty . This can be explained by 

the fact that npy  is correctly specified for the given data.   

Table-3:  Results of npy on Linear Data. 

Sample serial number 1 2 3 4 5 

Sample size m and ni 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50 

ty  1344.531793 1344.531793 1344.531793 1344.531793 1344.531793 

npy  1345.95725 1340.25334 1327.40832 1349.00000 1350.49969 

hty  1347.04198 1337.97500 1318.56434 1351.24476 1353.21979 

npt yy −  -1.425457 4.278453 17.123461 -4.468207 -5.967897 

htt yy −  -2.510187 6.556793 25.967453 -6.712967 -8.687997 

ar  0.00010 0.00010 0.00010 0.00010 0.00010 

br  0.00010 0.00010 0.00010 0.00010 0.00010 

 

 

Figure-3: Fraction of )(var/)(var htnp yianceyiance  on Linear Data 
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Results on Quadratic Data: Looking at Table-4, the errors in 

estimation indicates that the performances of the estimators npy  

and hty are indistinguishable. This points to the robustness of 

the estimator npy which is misspecified tor the quadratic data.  

The ratio )(var/)(var htnp yianceyiance  seem to tend to a 

constant as seen in figure (4), though the ratio is a bit wild for 

small samples.  Also, the variance for  npy  is larger than the 

variance for hty . 

 

Conclusion 

From the results, it is clear that when the nonparametric 

estimator ynp is correctly specified for the data, it is more 

efficient than the popular Horvitz Thompson design estimator 

yht and that ynp is only slightly less efficient when it is 

misspecified for the data. Also, the performance of the 

semiparametric estimator ysp is indistinguishable from that of 

the design estimator.  We conclude that the semiparametric and 

nonparametric estimators are robust estimators since they do not 

fail under misspecification. 

 

In a real world problem where we may not have, or may not be 

sure that we have all the relevant auxiliary information about a 

variable, model calibrated estimators would therefore be the 

estimators of choice. We have shown that in cases where some 

elements within clusters are unreachable but auxiliary 

information is available at element level, we can take advantage 

of this auxiliary information to obtain cluster totals, which are 

then used in the estimation of population total. We note that if 

there is a possibility that some clusters may be unreachable, it 

means there is also the possibility that some cluster elements 

may be unreachable. 

 

Table-4:  Results of npy on Quadratic Data. 

Sample serial  number 1 2 3 4 5 

Sample size m and ni 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50 

ty  6702.63067 6702.63067 6702.63067 6702.63067 6702.63067 

npy  6989.35523 6579.98771 7013.19892 6677.42846 6716.28391 

hty  6411.78004 6589.61917 6853.44946 6655.73623 6802.89124 

npt yy −  -286.72456 122.64296 -310.56825 25.20221 -13.65324 

htt yy −  290.85063 113.0115 -150.81879 46.89444 -100.26057 

ar  0.00010 0.00010 0.00010 0.00010 0.00010 

br  0.00010 0.00010 0.00010 0.00010 0.00010 

 

 

Figure-4: Fraction of )(var/)(var htnp yianceyiance  on Quadratic Data. 
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