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Abstract

The application of nonparametric model calibration estimators in multistage survey sampling has been studied by several
authors with the cluster level auxiliary information assumed completely available for each cluster. The reasoning behind
model calibration is that if the calibration constraints are satisfied by the auxiliary variable, then it is expected that the fitted
values of the variable of interest should satisfy such constraints too. In this paper, we have considered a case of auxiliary
information present at two levels. We derive estimators by treating the calibration problems at both levels as optimization
problems and solving them by the method of penalty functions. We have shown that the estimators obtained are robust since
they do not fail in the event the model is misspecified for the data.

Keywords: Optimization problem, semiparametric model, nonparametric model, model calibration, penalty function.

Introduction

The nonparametric and semiparametric modeling techniques
have become popular due to the failings of parametric modeling
when a model is misspecified. Given a sample § of 7 triple of

observations (Z,,x;,y,),i =L2,....,n from some population
U of size say N, of interest is to find an estimator for
E(y,)=g(x,;,Z,)of a missing population value. Once the

missing values are imputed, an estimate of the total of the
population of the dependent variable Y can then be obtained.

Breidt et al' considered a super population regression model, cf
given by

E,f(yi):g(xi’zi):ﬂ(xi)+zi:8 M

and used a sample estimate of the form gi = ,[t(xl.) + Ziﬁ with

ﬂ(xl.) obtained by local polynomial nonparametric method.

Accordingly, they obtained the following estimator for
population total
A Vi — g i
yreg:zgi+zT (2)
U s i

They found that the estimator shares some desirable properties
with the fully parametric regression estimators. It is location and
scale invariant, and it is internally calibrated for both the
parametric and the nonparametric components, in the sense that

A

X = ZU xoandz = ZU Z, . The estimator was shown to be

reg
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design consistent with the rate\/_ , in the sense that
_ 1
yreg_zin-l_Op(W)‘

Kihara et al* extended the work of Breidt et al' to include model
calibration in cluster sampling with auxiliary information
available at both element and cluster levels and missing values
fitted nonparametrically and semiparametrically by use of
penalized splines. The work by Kihara® considered calibration
problem as an optimization problem where missing values were
fitted parametrically. Further work by Kihara* considered the
calibration problem, in one stage sampling, as an optimization
problem with missing values fitted nonparametrically and
semiparametrically.

In this study, the work by Kihara et al® is extended by treating
the two levels calibration problems, in cluster sampling, as
constrained nonlinear optimization problems which we convert
to unconstrained optimization problems. We solve the resulting
problems by penalty function method to obtain the weights (at
both cluster and cluster element levels) assigned to sample
observations from some chi- square distance measures.

Two Level Model Calibration in cluster Sampling

Consider a population U partitioned into M clusters each of
sizey and let C be the population of the clusters. For all
clusters included in the sample s, two independent vectors, X;
and 7, are available where Z, is a categorical vector. For
simplicity, we let X; be a scalar. At stage one, a sample § of

size m consisting of clusters, is selected from C as per a fixed
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design p,(.). Let 77, = p(i€ s) and 7; = p(i, j € 5) be the
marginal and joint cluster inclusion probabilities respectively.

From each of the sampled cluster i€ §, a sample S, and size
n, consisting of cluster elements is selected as per a fixed

design pi(.)with the respective marginal and joint element

inclusion  probabilities as 7, = p(ke€ s,/ie s) and
T, =p(k,leslies). We assume invariance and
independence  of the second stage design. Let

t,=g(x,Z)+¢€,i=12,.., M, where the smooth function

8(x;,Z;) is the fitted model mean for the ith cluster total. For

simplicity we write g, for g(x;,Z;). Let f,= [f i]. be
es

the vector of cluster total estimators t: obtained from the

sampled clusters.

Now, consider the case where there is also auxiliary information
known at element level such that for each element in the ith

cluster, a nonparametric variable X, and a categorical vector

Z,, are available. Suppose that not all element values of the

variable of interest in a given cluster are available and have to
be imputed. We derive a model calibrated estimator of cluster

total. We define the semiparametric estimator for E g, (yik ) as

A

8y = 8(xy,zy) = x, )+ Z, B 3)

Where: fI(x, ) and x;, are defined for every elementk in the

cluster C;. For simplicity, we write f, for fA(x,). We

propose a model calibrated estimator of cluster total to be

=2 Wy S 4

kes;

with the weights w, derived in such a way that the chi square

distance measure below is minimized as discussed by Deville
and Sarndal’.

(Wik —d, )2 5)
kes, ik d,

d =

s

The distance measure is minimized subject to the constraints
Zwik =N, and Zwikgik = zgik proposed by Wu and
kes; kes; keC;

Sitter®. We have the optimization problem below similar to the
one of Kihara®,
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) —d.)?
min imize O = Msubject to
kes, Qi
ll(w‘r)zzwikéik_2§ik=0and ©)
kes; keC;
Lw)=> w,—N,=0
kes;

We construct an unconstrained problem as given below. See
7
Rao’".

2 2 2

o —d. ) R . 7

¢(W,J;):Z(Wlk7ddlk) +H(r;4)|:zvvikgik_zgik} +H(’L){ZWM_N1} @
keC;

kes, Qi kes, kes;
Now, H (r,)is a function of some penalty 7.

Differentiating (7) partially with respect to w, we get

2zw, —d
¢‘(w,k,ra):WJJH(’J@{ZWU@*zg’v}*zm’u){z‘w’k7Nl (8)
kes;

9 ik jes; jec,

Equating (8) to zero and solving for w,, we have

dy —H(r)q,d, z Wij[gikgij +1]- z[gikgij —1]
Jjes; JjeC;
wy = L — ©)
1+ H () (8,07 +Dgyd,)

Thus, a semiparametric estimator of the cluster total is given as

~ d.
t, = Zwikyik Z Yk

kes; _kes,1+H(ra)(((§ik)2 +1)qikdik)
(10)
H(r,)g,d;y, Z W,;,-[c‘:’ikc‘?,;,- +1]- Z[gikgzj -1]
Yy ek =6
kes; 1+H(ra)(((c‘:’ik)z +1)qz‘kdik)

Now, having estimated the cluster totals, we then derive a
population total estimator using the estimated cluster totals and

the auxiliary information available at cluster level. With ¢, and

X, defined for everyi€ C, we propose a semiparametric

model calibrated population total estimator as

ysp = Z witi
ics (11)
with W, obtained in such a way that the chi square distance

measure below is minimized.

(W,'_d,')2
MR T

i€ s i

12)
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The distance measure is minimized Subject to the constraints
Zwi =M andzwigi = th . Again, d; :7[‘1[ and g, are

ics ies ieC
some known positive constants uncorrelated withd,. We

therefore have the optimization problem

= 3

ies

ll(w):Zwi(éi—zgi:Oand

ies ieC

Lw)y=>Y w,-M

ies

min imize P subject to

3)
=0

We convert (13) to an unconstrained optimization problem
below

ies i i€s ieC i€s

P(w 1) = Z“ﬂf3+ﬂm{2wg Zg}+H({Zm—M}(”)

Where: 7, is some penalty.

Differentiating (14) partially with respect to w, we get

2(Wz _di)
d

¢ wr) = +2H<r,,)g{zw,g Zg]%ZH(r){ZW M} 15)

i jeC

We equate (15) to zero and solve for w; to obtain the following.

d,—H(r)gd| Y wlgg§,+11- Z[gg,

JES;
j¢z

1+ HG)(((2, ) +Dgid,)

(16)

Now we have a semiparametric estimator of the population total
obtained as

2= LT GG+ Dad)
. (17
H(r,)qdt, ij[gigj +1]_Z[§i§j -1]
¥ o =
1+ H ()8 +Dg,d,)
When the vectors Z, =Z, =0, then g(x,,z,)=/M4(x;)

and g(x;,z,)=A(x;). If we let [A(x,)=f,and
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A(x;)=/,, we have a nonparametric model calibrated
estimator for cluster total as
Yali
S G+ Dad)
(18)
H(r,)q,d, y, ng[ﬂikﬂg +1]- Z[ﬁik Aii -1
-y Jok =
kes; 1+H(ra)((la[k)2 +1)q[kd[k)
and the nonparametric population total estimator becomes
dA
yn = l ni = :
=2 §1+H(rb (@ +1ad)
H(rh)qx i“ni ZWJ[I[ZH[Z] +1]_z[ﬂlﬂl _1]
Jes jeC
_ Z J#l
ies 1+H(rh)(((lai )? +1)qidi) (19)

For a semiparametric case, to obtain the within cluster weights
w,, (k=12

unconstrained minimization problem. Starting with some initial

,.-s1,), we solve the penalty function (7) as an
guess for w,, and 7, , we repetitively improve on the guess until
optimal values are obtained. Given that our constraints are
equality constraints, our initial guess for w, is not required to

be feasible as explained in Kihara®. We make use of the Newton
method discussed in Rao’.

Let W, = J[Wil,wl.2 sy W, } be our set of weights. We wish to

derive VVI* so that

OO,y = [0 w70 7] =0 0)

We let W, be the initial approximation of VVl* so that

VV; =W, +V,. By Taylor’s series expansion of (W,") we get

W) =W, +V)) =W,) +Jy, V, +...... @1

If we ignore the higher order terms

S(W.)=0

in (21) and set

, we get

dW,)+J, V,=0 (22)
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The matrix J w, consists of the second order derivatives of the

penalty function (7) evaluated atW - In general, theJ Wy

matrix is a 77, by n, matrix. Let K and j denote the rows and

columns respectively.

Then, J v has the elements p +2H(r, )((g,ik)2 +1) in the
ik"ik

diagonal and the elements 2H (r,)(&,, gu + 1) elsewhere. If

J W, is invertible, then, from the linear equations (22) we have

V,=J, 0W,) (23)

The iterative procedure below is used in finding the enhanced

approximations of W .

1

Wiy =Wy — Jv;/,l, W,) (24)

The sequence of the points Wi i2"""vVi(l+l) will eventually

%

converge to the actual solution W .

* *
Let Wi be the minimum value of Wi calculated for a given

penalty7s, we calculate a sequence of minimum points

Wi Wirsois Wity for the penalties7i> 25 Tart until

* *
Wi =Wisny or QW 1) =0W,, 1) 10 a given degree of
accuracy. The penalty values are such that the initial value

1>0 4nd 7y :C’L,wherec<1. H(r,) > oasr, %0_

In nonparametric case, fI, replaces g, so that J W, Matrix is

then an, byn, matrix ~ with elements

diagonal
Ld +2H(r)((f1,)* +1) and the elements 2H (7, )(/[lik/[lg/ +1)
Qi Gy

elsewhere.

We next obtain the cluster level weights w;, (i =1,2,...,m).

Considering the semiparametric case, we  solve the penalty
function (14) as an unconstrained minimization problem. Let the

set of weights be W = {Wn Wz,...,wm} . We require W such
that

S ) = [0 00,1, )0, 1)] =0 ()
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We let W, be the initial estimate of W so that W' = W +V.

The Taylor’s series expansion of Z{W ") now gives

W) =W, +V) = SW) +J,, V +.... 26)

Again, we neglect the higher order terms in (26) and set

(W 1<) = 0 0 arrive at

ﬁ(VVi)+JWiV=O 27)

Where: J w, is the™ by M matrix of second order

i

derivatives of the penalty function (14) evaluated at W, . Let

i and jbe the row and column counters respectively. The

matrix J, has elements

i

+2H (1r,)((§,)* +1) in the
main diagonal and the elements 2H (r,)(¢,§; +1)elsewhere.
For nonparametric case, the matrix has 2 +2H (r,) (1, )Y +1)
as diagonal elements and the elements 2H (r,)(&[4; +1)

elsewhere.

We now have the iterative procedure below to find the improved

3
estimates of w .

14

i+l

=W, = J,, 8W,) (28)

Letting W, be the minimum value of w calculated for a

given penalty /5, we again calculate a sequence of minimum
points Wl*’WZ*"""W!:—I for the penalties /15 725++-->Tp+1  until
Wb* :Wbi—l or W, 1,) =PW. 7. )10 a specified degree of
accuracy. The penalty values for ’»may be set in similar

manner as ’a described above.

Local Polynomial Method of Fitting the Missing
Values

The aim in local polynomial regression is to minimize the
degree ¢ polynomial

i{yi—ﬁo—ﬂl(x,»—x,-)---ﬂ,,(x,-—x,-)"}K(x,-—x,-) (29)
B =By B> B,)

with  respect to
4(x;) = g, while ..., 3 estimates higher order derivatives of

where B, estimates
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A . The kernel function K (.) is discussed in Simonof®. From

the local polynomial smoother, the nonparametric fit of the
cluster totals can be obtained as

=84, (30)

Where: SSTi = €T(X5Ti(/75iXSi)_1XsTi@' e=(1,0...,0)",

si?

t, =t byt s @, =diagK((x% —x)/ h),...K((x, —x)/ h)),
h is the bandwidth and the matrix X ;has the rows
[, (x; —x), .., (x; —x )1, j=12,...,n. A discussion of

this is given by Breidt and Opsomer’.

In a manner similar to that of Breidt and Opsomer’, we obtain a
semiparametric fit for cluster totals as

8. =ST(Y.-Z' P +Z2.(2'S72)"'ZTS i 31

where S, =[S 2,....n], /;) = (ZZSSZS)_lzZSsY; and

Z =[Z,,Z,,...]is the vector of categorical variables.

si’l :1’

The nonparametric fit of the elements within clusters is then
obtained as

Ly =S5Y, (32)
Where: SST‘k = gT (XsTikwsiszik )_1 Xz;kwsik )

8 _(10 0) (ymy,z, ’ym) ’

o, = dlag(K((xij —x 1), . K((x;, —x,)/ b)), b

is the bandwidth within the ith cluster and X Six 18 @ matrix with

rows [, (xij -X;), ...,(xij -x,)], j=12,

The semiparametric fit of the elements within clusters is
similarly obtained as

8, =8S" (V. -Z'B)+Z,(Z'S. Z )" ZTS Y. (33)
Where S =[S, k=L2,....n], ,b’ —(Zsststz) Zsststz

and Z, =[Z2,,2Z.,,
the ith cluster.

...]is the vector of categorical variables in

Results

We analyze the performance of the derived estimators in
comparison to the performance of Horvitz Thompson design

International Science Community Association

Res. J. Mathematical and Statistical Sci.

estimator

Vi = thidl. of the population total, where

i=1

fhl = Zdﬂ( Vi is the cluster total estimator. In Figures-1 to 4,
kes;

the sample sizes given are for one stage sampling. That is, sizes

m of the samples of clusters. The size 7, of the sub sample

within a cluster was set as 0.25 of m1 .

Semiparametric Estimator Results: We simulated a

population size 300 of independent and identically distributed
variable X using uniform (0.1) and a categorical matrix Z .
N, =100 element

For each generated X, and vectorZ, ,

values were generated as follows.

g(x,,Z)

AR

Where: y,, is the kth element in the ith cluster and g(x;,Z;) ,

e, Yiid N(0,0.1) (34)

which we simply write g, is the mean function for the cluster
This

semiparametric modeling of the generating function by
Montanari and Ranalli'®. We considered the linear mean

function ZB +2+5x and the function Zf +(2+ 5x)*
which is quadratic, for auxiliary information at cluster level. For

total f,. generating function is an adaptation to

simplicity, within each cluster, the auxiliary information X;, at

element level was generated using the linear and quadratic mean
functions and working backward in a similar manner as in
Kihara'' to obtain the following.

o =2—z. '
X, = Yik . sz:B 35)
And
_ _2+\/ Ya — B’
X, = . (36)

Where: Z, is the matrix (Z,,,Z,,,Z,,),Z,, is a matrix of Is,
Z., is a matrix of 2s, 3s and 4s, while Z,; is a matrix of 5s,6s,
and 7s. [ is the matrix (1,2,3).

At stage one, samples of clusters of size 71 were generated by
simple random sampling. At stage two, within each of the

selected clusters, sub samples of sizen; were generated by
simple random sampling. For any combination of sample sizes

m andn,, 5 samples were generated at stage one and 10
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samples at stage two. We used local polynomial equation (33) in
fitting cluster elements and equation (31) in fitting cluster totals
and in each case the bandwidths are chosen to be a quarter of
the respective range in the data. In our study we used a
polynomial of degree I(local linear) and used the standard

kernel defined as K(v) =0.75(1-v?), v<1.

In estimating cluster totals by the penalty function method, our

initial penalty constant for7, was set atr, =0.00010. The
W, :Wi(laJrl) and

six decimal places.

convergence criteria considered was

ow,,1,)=P(w,,1,,,)to

estimated cluster totals, we generated estimates of the

Using the

population total. Again, we set the initial penalty value for7,
aty, =0.00010 and the convergence criteria as W,j = Whil and
o(w,1,) =@d(w,1,,,) to six decimal places. We compared the
performance of our estimator Vi with the Horvitz Thompson

estimator y,,, .

Table-1: Results of Y, on Linear Data.

Res. J. Mathematical and Statistical Sci.

We let y, = Z e ¢, be the actual population total where

t, = Z vee Vi is the actual cluster total. The errors in the

1

estimation are the differences y, — Yy, and y, =y, .

Results on Linear Data: Looking at table (1), the errors

indicate that the performances of both estimators y , and y,,
are indistinguishable, which indicates y  is as reliable as the

popular design estimator y,, . Convergence at both stage 1 and

stage 2 occurs at the initial values of the penalties. From Figure-
1, it can be seen that, from the ratio

var iance(ysp)/var iance(y,,), Y,, is a bit more variable

than Horvitz Thompson estimator y,,, .

sample serial number 1 2 3 4 5
sample sizes m and n; 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50
Y, 10637.07767 10637.07767 10637.07767 10637.07767 10637.07767
Yo 10655.64312 10591.80901 10776.77585 10657.06451 10616.70892
Vi 10713.64452 10551.51204 10587.80962 10579.51231 10722.72513
Yi= Yy -18.56545 45.26866 -139.69818 -19.98684 20.36875
Y=Y -76.56685 85.56563 49.26805 57.56536 -85.64746
r, 0.00010 0.00010 0.00010 0.00010 0.00010
5 0.00010 0.00010 0.00010 0.00010 0.00010
variance ratio vs sample size
o 50 100 1m0 200 250 300

sample size

Figure-1: Fraction of variance(y,,)/ variance(y, ) on Linear Data
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Results on Quadratic Data: Looking at table (2), again the
errors in the estimation indicate that the performances of 'y,
and Yy, are indistinguishable. This serves to show robustness of

the estimator y, which is in fact a misspecified model for

quadratic data.
variance(y,,)/ variance(y, ), the estimator y  has

In figure (2), we see that, from the ratio

bigger variance than y,, . This is expected since the data is from

a quadratic function, while Y,y uses a local linear function in

fitting the values.

Table-2: Results of y , on Quadratic Data.

Res. J. Mathematical and Statistical Sci.

Nonparametric Estimator Results: Using R software
program, and using uniform (0, 1), a population of the variable
X was simulated. Using the auxiliary variable x , two
populations for the dependent random variable Yy were

y=2+45x and y=(2+5x)>. We used local

polynomial equation (30) to fit cluster totals and equation (32)
to fit element values within a cluster. The cluster element
values were generated as

generated as

_ ﬂ(xi)+ Ei

Vi N, \/V, )

(&, Yiid N(0,0.1) (37)

sample serial number 1 2 3 4 5
sample size m and n; 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50
Y, 16054.39204 16054.39204 16054.39204 16054.39204 16054.39204
Yo 16077.78872 16389.73764 15525.60252 15845.52393 15936.92781
Vi 15706.03516 16389.95682 16259.14548 16174.82744 16081.07106
Yi— Yy -23.39668 -335.3456 521.78952 208.86811 117.46423
Y= Vi 347.60332 -335.56478 -204.75344 -120.4354 -26.67902
r, 0.00010 0.00010 0.00010 0.00010 0.00010
r, 0.00010 0.00010 0.00010 0.00010 0.00010

variance ratio vs sample size

140

120

80

variance ratio

2

150 200 250 300

sample size

Figure-2: Fraction of variance(y,,)/ variance(y,) on Quadratic Data.
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The respective auxiliary information was regenerated as shown

ISSN 2320-6047

below for the linear and quadratic mean functions.
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Results on Linear Data: From Table-3, both estimators y,,

and y,, have small errors and consistently, y,  has the smaller

x, = Vi — 2 38) e.rror marfgins.. Th%s can be ex;.)lained by the fa.ct. that the data is
5 linear which implies that Vop 18 correctly specified for the data.
And Froml Figure-3, . we see' that the ra'tio
variance(y,, )/ variance(y,, ) increases as the sample size
Vi = ) grows up to a constant of about 0.37. Thus, the variance for Yup
ik = 5 (39) is consistently lower than that of y,, . This can be explained by
the fact that Yup is correctly specified for the given data.
Table-3: Results of y,, on Linear Data.
Sample serial number 1 2 3 4 5
Sample size m and n; 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50
y, 1344.531793 1344.531793 1344.531793 1344.531793 1344.531793
Vup 1345.95725 1340.25334 1327.40832 1349.00000 1350.49969
Vi 1347.04198 1337.97500 1318.56434 1351.24476 1353.21979
Ye™ Y -1.425457 4.278453 17.123461 -4.468207 -5.967897
Vo= Vu -2.510187 6.556793 25.967453 -6.712967 -8.687997
r, 0.00010 0.00010 0.00010 0.00010 0.00010
r, 0.00010 0.00010 0.00010 0.00010 0.00010

variance ratio

04

03

02

00

variance ratio vs sample size

50 100

I I I I
150 200 250 300

sample size

Figure-3: Fraction of variance(y,,)/variance(y,,) on Linear Data
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Results on Quadratic Data: Looking at Table-4, the errors in

estimation indicates that the performances of the estimators y,,
and y,, are indistinguishable. This points to the robustness of
the estimator Yup which is misspecified tor the quadratic data.

The ratio variance(y,,)/variance(y, ) seem to tend to a
constant as seen in figure (4), though the ratio is a bit wild for

small samples. Also, the variance for Yup is larger than the

variance for y,, .

Conclusion

From the results, it is clear that when the nonparametric
estimator y,, is correctly specified for the data, it is more
efficient than the popular Horvitz Thompson design estimator
yn and that y,, is only slightly less efficient when it is

Table-4: Results of Y,y 00 Quadratic Data.

Res. J. Mathematical and Statistical Sci.

misspecified for the data. Also, the performance of the
semiparametric estimator y, is indistinguishable from that of
the design estimator. We conclude that the semiparametric and
nonparametric estimators are robust estimators since they do not
fail under misspecification.

In a real world problem where we may not have, or may not be
sure that we have all the relevant auxiliary information about a
variable, model calibrated estimators would therefore be the
estimators of choice. We have shown that in cases where some
elements within clusters are unreachable but auxiliary
information is available at element level, we can take advantage
of this auxiliary information to obtain cluster totals, which are
then used in the estimation of population total. We note that if
there is a possibility that some clusters may be unreachable, it
means there is also the possibility that some cluster elements
may be unreachable.

Sample serial number 1 2 3 4 5
Sample size m and n; 100 and 50 100 and 50 100 and 50 100 and 50 100 and 50
y, 6702.63067 6702.63067 6702.63067 6702.63067 6702.63067
Vup 6989.35523 6579.98771 7013.19892 6677.42846 6716.28391
Vi 6411.78004 6589.61917 6853.44946 6655.73623 6802.89124
Ye™ Y -286.72456 122.64296 -310.56825 25.20221 -13.65324
V.= Vi 290.85063 113.0115 -150.81879 46.89444 -100.26057
r, 0.00010 0.00010 0.00010 0.00010 0.00010
r, 0.00010 0.00010 0.00010 0.00010 0.00010
variance ratio vs sample size
cln 5|o 1c|:o 15|o 2c|:o 25|o 3c|:o

sample size

Figure-4: Fraction of variance(y,,)/variance(y,,) on Quadratic Data.
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