

Merging is possible and continuous for 2-regular graphs

Maneesha Sakalle¹ and Arun Sursudde^{2*}

¹Department of Mathematics, Shri Nilkantheshwar Govt. Post Graduate College, Khandwa, MP, India ²School of Mathematics, Takshshila Parishar, Devi Ahilya Vishwavidyalaya, Indore, MP, India arunsursudde03124@gmail.com

> **Available online at: www.isca.in, www.isca.me** Received 23rd April 2017, revised 4th August 2017, accepted 10th August 2017

Abstract

In the previous paper, we show that the merging is possible for smallest 2-regular graphs. Now we work on the merging is possible for all types of undirected similar 2-regular graphs. That is the merging is possible for 2-regular graphs with n vertices. Where n is natural number and representing the vertices of 2-regular graphs for the merging. Always n is greater than or equal to three $(n\geq 3)$ for 2-regular graphs. That is every regular graph has same number of degree. Here first we prove some results based on the merging of 2-regular graphs with $n\geq 3$ vertices. Latter we define continuous merging and after that we will work on the continuous merging for 2-regular graphs with $n\geq 3$ vertices using our definitions. Also we prove some results based on continuous merging for 2-regular graphs with $n\geq 3$ vertices. We are complete our work using some operators and merging techniques.

Keywords: Regular graph, Merge, Operator, Technique, Continuous, Vertex, Degree.

Introduction

In the previous paper, we prove some results based on the merging of similar smallest 2-regular graphs¹. Those results are show that the merging is possible for smallest 2-regulaer graphs². Now we think and discuss about the longer merging possibilities conditions for smallest 2-regular graphs³. That is the merging is possible for more than two smallest 2-regular graphs. This is called continuous merging for smallest 2-regular graphs⁴.

In this paper, first we prove some results based the possibility of merging for more than two smallest 2-regular graphs. If it is possible for three smallest 2-regular graphs, then we prove for finitely many smallest 2-regular graphs.

Later we are providing a condition for infinitely continuous merging for smallest 2-regular graphs.

Also we prove the continuous merging for all types of similar 2-regular graphs⁴.

Definitions

Merging technique for regular graphs: Merging technique is a process, which is used for converting of two or more than two regular graphs into a single regular graph⁵. Where given regular graphs are having same number of degree or similar regular graphs (for the both graphs, every vertex has same degree)⁵.

We say merging is possible: i. If the resultant graph is regular graph and, ii. Degree of each vertex in resultant graph is equal to degree of each vertex in given regular graphs. Let G and G' are two regular graphs. If the merging is possible, then merging of G and G' is denoted by $G \iff G'$ Otherwise $G \ll G' \otimes G'$ (when merging of G and G' is not possible)⁶.

Operator: Operator is the major part of merging. It is used for store/remove edge at the time of merging. Generally, one operator store/remove one edge at the time of merging⁴. When the edge is store by operator then it is denoted by >>OPERATOR_NAME (edge). When edge is leave/remove by operator then it is denoted by OPERATOR_NAME (edge)>>³.

Continuous merging: If merging is possible for more than two regular graphs, then we say merging is continuous.

Results

Theorem-1: If $G_1, G_2, G_3, \ldots, G_{m-1}, G_m$ are smallest 2-regular graphs, then show that $G_1 <<>> G_2 <<>> G_3 <<>> \ldots <<>> G_{m-1} <<>> G_m$. where m is any finite nonnegative integer⁸.

Or

The continuous merging is possible for finitely many smallest 2-regular graphs.

Proof: Let G_1 , G_2 , G_3, G_{m-1} , G_m are smallest 2-regular graphs, then we show that $G_1 <<>> G_2 <<>> G_3 <<>> \ldots$... $<<>> G_{m-1} <<>> G_m$.

Step-1: Since $G_1=(V_1, E_1)$, where $V_1=\{v_1,v_1',v_1''\}$; $E_1=\{e_1,e_1',e_1''\}$ and $G_2=(V_2, E_2)$, where $V_2=\{v_2,v_2',v_2''\}$; $E_2=\{e_2,e_2',e_2''\}$ are smallest 2-regular graphs.

Then by Theorem 2: The merging of two smallest 2-regular graphs is $possible^{6}$.

Case-1: When the $\alpha_1(e_1') >>$ then this edge joining to $e_1'=(v_1', v_2')$. In this case the $\alpha_2(e_2) >>$ is join to rest special vertices of graphs⁷. i.e. the edge joining to $e_2=(v_1'', v_2)$.

Thus merging of G_1 and G_2 is possible.

Or

Case-2: When the $\alpha_1(e_2) >>$ then this edge joining to $e_2=(v_1, v_2)$. In this case the $\alpha_2(e_1) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_1'=(v_1'', v_2)$.

Or

Case-3: When the $\alpha_1(e_1') >>$ then this edge joining to $e_1'=(v_1', v_2)$. In this case the $\alpha_2(e_2) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_2=(v_1'', v_2')$.

Thus merging of G_1 and G_2 is possible.

Or

Case-4: When the $\alpha_1(e_2)$ >> then this edge joining to $e_2=(v_1', v_2)$. In this case the $\alpha_2(e_1')$ >> is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_1'=(v_1'', v_2')$.

Thus merging of G_1 and G_2 is possible.

- i.e. $G_1 \ll G_2$ is a 2- regular graph.
- **Step-2:** Now let $X_1 = G_1 <<>>G_2$ and let $G_3 = (V_3, E_3)$ where $V_3 = \{v_3, v_3', v_3''\}_E_3 = \{e_3, e_3', e_3''\}$. First we draw the $G_3 = (V_3, E_3)$.

Now we show that $X_1 <<>>G_3$ is 2-regular graph.

Let α_3 and α_4 be the operators for X_1 and G_3 . Now we assume edge e_2 ' is stored by α_3 and denoted by $>>\alpha_3(e_2)$. Similarly we assume edge e_3 is stored by α_4 and denoted by $>>\alpha_4(e_3)$. After these the vertices v_2 ', v_2 '' in the step1 (all cases) and v_3 , v_3 ' in Figure-7 are special vertices⁶. Then

Case-1: First we are merging G_3 with X_1 . Where X_1 is describe in the case1 of step1.

Figure-8b: When edge e_3 of G_3 is stored by α_4

Condition-1: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2', v_3')$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3)$ (Figure-9).

Condition-2: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2'', v_3)$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3')$ (Figure-10).

Condition-3: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2', v_3)$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3')$ (Figure-11).

Condition-4: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2'', v_3')$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3)$ (Figure-12).

Similarly,

Case-2: First we are merging G_3 with X_1 . Where X_1 is describe in the case-2 of step-1.

Condition-1: When the $\alpha_3(e_2') >>$ then this edge joining to $e_2'=(v_2', v_3')$. In this case the $\alpha_4(e_3) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3)$.

Similarly,

Condition-2: When the $\alpha_3(e_2')$ >> then this edge joining to $e_2'=(v_2'', v_3)$. In this case the $\alpha_4(e_3)$ >> is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3')$.

Condition-3: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2', v_3)$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3')$.

Condition-4: When the $\alpha_3(e_2') >>$ then this edge joining to $e_2'=(v_2'', v_3')$. In this case the $\alpha_4(e_3) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3)$.

Case-3: First we are merging G_3 with X_1 . Where X_1 is describe in the case-3 of step-1.

Condition-1: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2', v_3')$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3)$.

Figure-14: when edge $e_2' = (v_2', v_3')$ and $e_3 = (v_2'', v_3)$

Similarly,

Condition-2: When the $\alpha_3(e_2') >>$ then this edge joining to $e_2'=(v_2'', v_3)$. In this case the $\alpha_4(e_3) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3')$.

Condition-3: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2', v_3)$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3')$.

Condition-4: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2'', v_3')$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3)$.

Case-4: First we are merging G_3 with X_1 . Where X_1 is describe in the case-4 of Step-1.

Condition-1: When the $\alpha_3(e_2') >>$ then this edge joining to $e_2'=(v_2', v_3')$. In this case the $\alpha_4(e_3) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3)$.

Similarly,

Condition-2: When the $\alpha_3(e_2') >>$ then this edge joining to $e_2'=(v_2'', v_3)$. In this case the $\alpha_4(e_3) >>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3')$.

Condition-3: When the $\alpha_3(e_2')$ >> then this edge joining to $e_2'=(v_2', v_3)$. In this case the $\alpha_4(e_3)$ >> is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2'', v_3')$.

Condition-4: When the $\alpha_3(e_2')>>$ then this edge joining to $e_2'=(v_2'', v_3')$. In this case the $\alpha_4(e_3)>>$ is join to rest special vertices of graphs⁶. i.e. the edge joining to $e_3=(v_2', v_3)$.

Now by apply the definition of merging technique ^[1] on the resultant graphs. Then, in each condition of all cases we get the resultant graph is a regular graph and degree of each vertex is equal to X_1 or G_3 .

Thus the resultant graphs are 2-regular graphs.

Thus the merging is possible for X_1 and G_3 .

i.e. $X_1 <<>> G_3$ or $G_1 <<>> G_2 <<>> G_3$. Since $X_1 = G_1 <<>> G_2$.

Now we assume in t-1th step the merging of $G_t = (V_t, E_t)$ where t<m and $V_t = \{v_t, v_t', v_t''\}$; $E_t = \{e_t, e_t', e_t''\}$ is possible with X_{t-2} , where $X_{t-2} = G_1 <<>> G_2 <<>> G_3 <<>>> \dots <<<>> G_{t-1}$.

Thus $G_1 <<>> G_2 <<>> G_3 <<<>> G_{t-1} <<>> G_t$.

Step t: Now let $X_{t-1}=G_1 <<>>G_2 <<>>G_3 <<>>>.....$ $<<>>G_{t-1} <<>>G_t$ and $G_{t+1} = (V_{t+1}, E_{t+1})$ where $V_{t+1} = \{v_{t+1}, v_{t+1}', v_{t+1}''\}_{t}$ $E_{t+1} = \{e_{t+1}, e_{t+1}', e_{t+1}''\}$ we show are the merging is possible for X_{t-1} and $G_{t+1}(By$ strong induction principle)⁸ &(By strong mathematical induction method)⁹.

Case-1: We are merging G_{t+1} with X_{t-1} . Where X_{t-1} is describe in the case1 of t-1th step.

Here there are $4^{t-1}/4$ cases. We are not discussing all the cases. Since the cases are depending on the value of t.

In this case we are getting a 2-regular graph (in all cases we getting 2-regular graphs).

Figure-16: The merging of X_{t-1} and G_{t+1}

Thus the merging of X_{t-1} and G_{t+1} is possible.

i.e $G_1 <<>> G_2 <<>> G_3 <<>> G_{t-1} <<>> G_t$ <<>> G_{t+1} is possible. Since

 $X_{t-1} = G_1 <<>> G_2 <<>> G_3 <<>>> \dots <<>> G_{t-1} <<>> G_t$

Thus by the strong induction method the merging is possible for all smallest 2-regular graphs.

That is if G_1 , G_2 , G_3 G_{m-1} , G_m are smallest 2-regular graphs, then $G_1 <<>>G_2 <<>>G_3 <<>>>\dots <<<>>G_{m-1}$ <<>> G_m is possible. Where, $m \ge 2$ is finite nonnegative integer.

Hence the continuous merging is possible for finitely many smallest 2-regular graphs.

Theorem-2: If G_1 , G_2 , G_3 G_{m-1} , G_m are similar 2-regular graphs with finitely many vertices, then show that $G_1 <<>> G_2 <<>> G_3 <<>>>$ $<<>> G_{m-1} <<>> G_m$. where m is any finite nonnegative integer.

Or

If $n\geq 3$ is represent the number of vertices of similar 2-regular graphs. Then the continuous merging is possible for finitely many similar 2-regular graphs.

Proof: We know that the smallest 2-regular graph contains three vertices and the continuous merging is possible for smallest 2-regular graph. Thus the continuous merging is possible for n=3. (By Theorem 1: The continuous merging is possible for finitely many smallest 2-regular graphs.)

Now, if the number of vertices n>3. Then by the definition of merging technique, the continuous merging is possible for those types of 2-regular graphs.

Hence the continuous merging is possible for all types of similar 2-regular graphs.

The above results are show that the continuous merging is possible for finitely many smallest 2-regular graphs and also the continuous merging is possible for all types of similar 2-regular graphs.

References

Conclusion

- 1. Duckworth William, Manlove David F. and Zito Michele (2005). On the approximability of the maximum induced matching problem. *J. Discrete Algo.*, 3(1), 79-91.
- 2. Weisstein E.W. (2014). Two-Regular Graph. Wolfram Research, Inc. http://mathworld.wolfram.com/Two-RegularGraph.html. 30/07/2017.
- **3.** Munkres James R. (2010). Topology. PHI Learning Private Limited, New Delhi, India, 264-288. ISBN: 978-81-203-246-8
- **4.** Munkres James R. (2010). Topology. PHI Learning Private Limited, New Delhi, India, 102-103. ISBN: 978-81-203-246-8
- Wilson Robin J. (1996). Introduction to Graph Theory. International E- Publication, England, 18. ISBN: 0-582-24993-7
- 6. Sakalle Maneesha and sursudde Arun (2016). A note on the merging of regular graphs. Souvenir from 6th *International Science Congress*. Pune, India, 8th-9th Dec., 145.
- 7. Weisstein Eric W. (2017). Nonnegative Integer. http://mathworld.wolfram.com/ NonnegativeInteger.html 31/07/2017.
- 8. Munkres James R. (2010). Topology. PHI Learning Private Limited, New Delhi, India, 33. ISBN: 978-81-203-246-8
- **9.** Weisstein Eric W. (2017). Principal of Strong Induction. http://mathworld.wolfram.com/PrincipalofStrongInduction. html 31/07/2017.