Merging is possible and continuous for 2-regular graphs

Maneesha Sakalle ${ }^{1}$ and Arun Sursudde ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, Shri Nilkantheshwar Govt. Post Graduate College, Khandwa, MP, India
${ }^{2}$ School of Mathematics, Takshshila Parishar, Devi Ahilya Vishwavidyalaya, Indore, MP, India arunsursudde03124@gmail.com

Available online at: www.isca.in, www.isca.me
Received $23^{\text {rd }}$ April 2017, revised $4^{\text {th }}$ August 2017, accepted $10^{\text {th }}$ August 2017

Abstract

In the previous paper, we show that the merging is possible for smallest 2-regular graphs. Now we work on the merging is possible for all types of undirected similar 2-regular graphs. That is the merging is possible for 2-regular graphs with n vertices. Where n is natural number and representing the vertices of 2-regular graphs for the merging. Always n is greater than or equal to three ($n \geq 3$) for 2-regular graphs. That is every regular graph has same number of degree. Here first we prove some results based on the merging of 2-regular graphs with $n \geq 3$ vertices. Latter we define continuous merging and after that we will work on the continuous merging for 2 -regular graphs with $n \geq 3$ vertices using our definitions. Also we prove some results based on continuous merging for 2 -regular graphs with $n \geq 3$ vertices. We are complete our work using some operators and merging techniques.

Keywords: Regular graph, Merge, Operator, Technique, Continuous, Vertex, Degree.

Introduction

In the previous paper, we prove some results based on the merging of similar smallest 2-regular graphs ${ }^{1}$. Those results are show that the merging is possible for smallest 2 -regulaer graphs ${ }^{2}$. Now we think and discuss about the longer merging possibilities conditions for smallest 2-regular graphs ${ }^{3}$. That is the merging is possible for more than two smallest 2 -regular graphs. This is called continuous merging for smallest 2-regular graphs ${ }^{4}$.

In this paper, first we prove some results based the possibility of merging for more than two smallest 2-regular graphs. If it is possible for three smallest 2-regular graphs, then we prove for finitely many smallest 2-regular graphs.

Later we are providing a condition for infinitely continuous merging for smallest 2-regular graphs.

Also we prove the continuous merging for all types of similar 2regular graphs ${ }^{4}$.

Definitions

Merging technique for regular graphs: Merging technique is a process, which is used for converting of two or more than two regular graphs into a single regular graph ${ }^{5}$. Where given regular graphs are having same number of degree or similar regular graphs (for the both graphs, every vertex has same degree) ${ }^{5}$.

We say merging is possible: i. If the resultant graph is regular graph and, ii. Degree of each vertex in resultant graph is equal to degree of each vertex in given regular graphs.

Let G and G^{\prime} are two regular graphs. If the merging is possible, then merging of G and G^{\prime} is denoted by $G \ll \gg G^{\prime}$ Otherwise $\mathrm{G} \ll / \gg \mathrm{G}^{\prime}$ (when merging of G and G^{\prime} is not possible) ${ }^{6}$.

Operator: Operator is the major part of merging. It is used for store/remove edge at the time of merging. Generally, one operator store/remove one edge at the time of merging ${ }^{4}$. When the edge is store by operator then it is denoted by >>OPERATOR_NAME (edge). When edge is leave/remove by operator then it is denoted by OPERATOR_NAME (edge) \gg^{3}.

Continuous merging: If merging is possible for more than two regular graphs, then we say merging is continuous.

Results

Theorem-1: If $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3} \ldots \ldots \ldots . \mathrm{G}_{\mathrm{m}-1}, \mathrm{G}_{\mathrm{m}}$ are smallest 2-regular graphs, then show that $\mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{m}-1} \ll \gg \mathrm{G}_{\mathrm{m}}$. where m is any finite nonnegative integer ${ }^{8}$.

Or
The continuous merging is possible for finitely many smallest 2 regular graphs.

Proof: Let $G_{1}, G_{2}, G_{3} \ldots \ldots \ldots, G_{m-1}, G_{m}$ are smallest 2-regular graphs, then we show that $\mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{m}-1} \ll \gg \mathrm{G}_{\mathrm{m}}$.

Step-1: Since $G_{1}=\left(V_{1}, E_{1}\right)$, where $V_{1}=\left\{v_{1}, v_{1}{ }^{\prime}, v_{1}{ }^{\prime}\right\}$; $E_{1}=\left\{e_{1}, e_{1}{ }^{\prime}, e_{1}{ }^{\prime}{ }^{\prime}\right\}$ and $G_{2}=\left(V_{2}, E_{2}\right)$, where $V_{2}=\left\{v_{2}, v_{2}{ }^{\prime}, v_{2}{ }^{\prime}\right\}$; $\mathrm{E}_{2}=\left\{\mathrm{e}_{2}, \mathrm{e}_{2}{ }^{\prime}, \mathrm{e}_{2}{ }^{\prime}{ }^{\prime}\right\}$ are smallest 2-regular graphs.

Figure-1: $G_{1}=\left(V_{1}, E_{1}\right)$.

Figure-2: $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$.
Then by Theorem 2: The merging of two smallest 2-regular graphs is possible ${ }^{6}$.

Case-1: When the $\alpha_{1}\left(e_{1}{ }^{\prime}\right) \gg$ then this edge joining to $e_{1}{ }^{\prime}=\left(v_{1}{ }^{\prime}\right.$, $\left.v_{2}{ }^{\prime}\right)$. In this case the $\alpha_{2}\left(e_{2}\right) \gg$ is join to rest special vertices of graphs ${ }^{7}$. i.e. the edge joining to $\mathrm{e}_{2}=\left(\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}\right)$.

Figure-3: When edge $\mathrm{e}_{1}{ }^{\prime}=\left(\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}\right)$ and $\mathrm{e}_{2}=\left(\mathrm{v}_{1}{ }^{\prime}{ }^{\prime}, \mathrm{v}_{2}\right)$.
Thus merging of G_{1} and G_{2} is possible.
Or
Case-2: When the $\alpha_{1}\left(e_{2}\right) \gg$ then this edge joining to $e_{2}=\left(v_{1}\right.$, $\left.v_{2}{ }^{\prime}\right)$. In this case the $\alpha_{2}\left(e_{1}{ }^{\prime}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{1}{ }^{\prime}=\left(v_{1}{ }^{\prime}, v_{2}\right)$.

Figure-4: When edge $e_{1}{ }^{\prime}=\left(v_{1}{ }^{\prime}{ }^{\prime}, v_{2}\right)$ and $e_{2}=\left(v_{1}{ }^{\prime}, v_{2}{ }^{\prime}\right)$.
Thus merging of G_{1} and G_{2} is possible.
Or

Case-3: When the $\alpha_{1}\left(e_{1}{ }^{\prime}\right) \gg$ then this edge joining to $e_{1}{ }^{\prime}=\left(v_{1}{ }^{\prime}\right.$, $\left.v_{2}\right)$. In this case the $\alpha_{2}\left(e_{2}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{2}=\left(v_{1}{ }^{\prime}, v_{2}{ }^{\prime}\right)$.

Figure-5: When edge $e_{1}{ }^{\prime}=\left(v_{1}{ }^{\prime}, v_{2}\right)$ and $e_{2}=\left(v_{1}{ }^{\prime}, v_{2}{ }^{\prime}\right)$
Thus merging of G_{1} and G_{2} is possible.
Or
Case-4: When the $\alpha_{1}\left(e_{2}\right) \gg$ then this edge joining to $e_{2}=\left(v_{1}, v_{2}\right)$. In this case the $\alpha_{2}\left(\mathrm{e}_{1}{ }^{\prime}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $\mathrm{e}_{1}{ }^{\prime}=\left(\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}\right)$.

Figure-6: When edge $\mathrm{e}_{2}=\left(\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}\right)$ and $\mathrm{e}_{1}{ }^{\prime}=\left(\mathrm{v}_{1}{ }^{\prime}{ }^{\prime}, \mathrm{v}_{2}{ }^{\prime}\right)$
Thus merging of G_{1} and G_{2} is possible.
i.e. $G_{1} \ll \gg G_{2}$ is a 2-regular graph.

Step-2: Now let $X_{1}=G_{1} \ll \gg G_{2}$ and let $G_{3}=\left(V_{3}, E_{3}\right)$ where $V_{3}=$ $\left\{v_{3}, v_{3}, v_{3}{ }^{\prime \prime}\right\}_{;} E_{3}=\left\{e_{3}, e_{3}{ }^{\prime}, e_{3}{ }^{\prime \prime}\right\}$. First we draw the $G_{3}=\left(V_{3}, E_{3}\right)$.

Figure-7: $\mathrm{G}_{3}=\left(\mathrm{V}_{3}, \mathrm{E}_{3}\right)$.
Now we show that $X_{1} \ll \gg G_{3}$ is 2-regular graph.
Let α_{3} and α_{4} be the operators for X_{1} and G_{3}. Now we assume edge $e_{2}{ }^{\prime}$ is stored by α_{3} and denoted by $\gg \alpha_{3}\left(e_{2}{ }^{\prime}\right)$. Similarly we assume edge e_{3} is stored by α_{4} and denoted by $\gg \alpha_{4}\left(e_{3}\right)$. After these the vertices $\mathrm{v}_{2}{ }^{\prime}$, $\mathrm{v}_{2}{ }^{\prime}$ ' in the step1 (all cases) and $\mathrm{v}_{3}, \mathrm{v}_{3}{ }^{\prime}$ in Figure-7 are special vertices ${ }^{6}$. Then

Case-1: First we are merging G_{3} with X_{1}. Where X_{1} is describe in the case 1 of step1.

Figure-8a: When edge e_{2} ' of X_{1} is stored by α_{3}

Figure-8b: When edge e_{3} of G_{3} is stored by α_{4}

Condition-1: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$ (Figure9).

Condition-2: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$ (Figure10).

Condition-3: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $\mathrm{e}_{3}=\left(\mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}\right)$ (Figure11).

Condition-4: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}, v_{3}\right)$ (Figure12).

Figure-9: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime \prime}, v_{3}\right)$

Figure-10: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime \prime}, v_{3}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$

Figure-11: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime \prime}, v_{3}{ }^{\prime}\right)$

Similarly,

Case-2: First we are merging G_{3} with X_{1}. Where X_{1} is describe in the case-2 of step-1.

Condition-1: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$.

Similarly,

Condition-2: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $\mathrm{e}_{2}{ }^{\prime}=\left(\mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}\right)$. In this case the $\alpha_{4}\left(\mathrm{e}_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$.

Condition-3: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $\mathrm{e}_{2}{ }^{\prime}=\left(\mathrm{v}_{2}, v_{3}\right)$. In this case the $\alpha_{4}\left(\mathrm{e}_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$.

Condition-4: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}, v_{3}\right)$.

Case-3: First we are merging G_{3} with X_{1}. Where X_{1} is describe in the case-3 of step-1.

Condition-1: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$.

Figure-12: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime \prime}, v_{3}{ }^{\prime}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$

Figure-13: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime \prime}, v_{3}\right)$

Figure-14: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime \prime}, v_{3}\right)$

Similarly,

Condition-2: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $\mathrm{e}_{2}{ }^{\prime}=\left(\mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}\right)$. In this case the $\alpha_{4}\left(\mathrm{e}_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}, v_{3}{ }^{\prime}\right)$.

Condition-3: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}, v_{3}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$.

Condition-4: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$.

Case-4: First we are merging G_{3} with X_{1}. Where X_{1} is describe in the case-4 of Step-1.

Condition-1: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $\mathrm{e}_{2}{ }^{\prime}=\left(\mathrm{v}_{2}{ }^{\prime}, \mathrm{v}_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(\mathrm{e}_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$.

Similarly,

Condition-2: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$.

Condition-3: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$.

Condition-4: When the $\alpha_{3}\left(\mathrm{e}_{2}{ }^{\prime}\right) \gg$ then this edge joining to $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$. In this case the $\alpha_{4}\left(e_{3}\right) \gg$ is join to rest special vertices of graphs ${ }^{6}$. i.e. the edge joining to $e_{3}=\left(v_{2}{ }^{\prime}, v_{3}\right)$.

Now by apply the definition of merging technique ${ }^{[1]}$ on the resultant graphs. Then, in each condition of all cases we get the resultant graph is a regular graph and degree of each vertex is equal to $\mathbf{X}_{\mathbf{1}}$ or $\mathbf{G}_{\mathbf{3}}$.

Thus the resultant graphs are 2-regular graphs.
Thus the merging is possible for $\mathbf{X}_{\mathbf{1}}$ and \mathbf{G}_{3}.
i.e. $X_{1} \ll \gg G_{3}$ or $G_{1} \ll \gg G_{2} \ll \gg G_{3}$. Since $X_{1}=G_{1} \ll \gg G_{2}$.

Now we assume in $t-1^{\text {th }}$ step the merging of $G_{t}=\left(V_{t}, E_{t}\right)$ where $t<m$ and $V_{t}=\left\{v_{t}, v_{t}{ }^{\prime}, v_{t}{ }^{\prime}\right\} ; E_{t}=\left\{e_{t}, e_{t}{ }^{\prime}, e_{t}{ }^{\prime}\right\}$ is possible with X_{t-2}, where $X_{t-2}=G_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{t}-1}$.

Thus $\mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg$. \qquad $\ll \gg \mathrm{G}_{\mathrm{t}-1} \ll \gg \mathrm{G}_{\mathrm{t}}$.

Step t: Now let $\mathrm{X}_{\mathrm{t}-1}=\mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg$. \qquad
$\ll \gg \mathrm{G}_{\mathrm{t}-1} \ll \gg \mathrm{G}_{\mathrm{t}}$ and $\mathrm{G}_{\mathrm{t}+1}=\left(\mathrm{V}_{\mathrm{t}+1}, \mathrm{E}_{\mathrm{t}+1}\right)$ where $\mathrm{V}_{\mathrm{t}+1}=\left\{\mathrm{v}_{\mathrm{t}+1}, \mathrm{v}_{\mathrm{t}+1}\right.$, $\left.v_{t+1}{ }^{\prime}\right\} ; E_{t+1}=\left\{e_{t+1}, e_{t+1}{ }^{\prime}, e_{t+1}{ }^{\prime}\right\}$ we show are the merging is possible for $\mathrm{X}_{\mathrm{t}-1}$ and $\mathrm{G}_{\mathrm{t}+1}(\mathrm{By} \text { strong induction principle) })^{8} \&(\mathrm{By}$ strong mathematical induction method) ${ }^{9}$.

Case-1: We are merging G_{t+1} with X_{t-1}. Where X_{t-1} is describe in the case 1 of $t-1^{\text {th }}$ step.

Here there are $4^{t-1} / 4$ cases. We are not discussing all the cases. Since the cases are depending on the value of t.

In this case we are getting a 2-regular graph (in all cases we getting 2-regular graphs).

Figure-15: when edge $e_{2}{ }^{\prime}=\left(v_{2}{ }^{\prime}, v_{3}{ }^{\prime}\right)$ and $e_{3}=\left(v_{2}{ }^{\prime}{ }^{\prime}, v_{3}\right)$

Figure-16: The merging of X_{t-1} and G_{t+1}

Thus the merging of $\mathbf{X}_{\mathbf{t}-\mathbf{1}}$ and $\mathbf{G}_{\mathbf{t}+\mathbf{1}}$ is possible.
i.e $\quad \mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{t}-1} \ll \gg \mathrm{G}_{\mathrm{t}}$
$\ll \gg G_{t+1}$ is possible. Since
$X_{t-1}=G_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{t}-1} \ll \gg \mathrm{G}_{\mathrm{t}}$
Thus by the strong induction method the merging is possible for all smallest 2-regular graphs.

That is if $G_{1}, G_{2}, G_{3} \ldots \ldots \ldots . G_{m-1}, G_{m}$ are smallest 2-regular graphs, then $\mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{m}-1}$ $\ll \gg \mathrm{G}_{\mathrm{m}}$ is possible. Where, $\mathrm{m} \geq 2$ is finite nonnegative integer.

Hence the continuous merging is possible for finitely many smallest 2-regular graphs.

Theorem-2: If $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3} \ldots \ldots \ldots . \mathrm{G}_{\mathrm{m}-1}, \mathrm{G}_{\mathrm{m}}$ are similar 2-regular graphs with finitely many vertices, then show that $\mathrm{G}_{1} \ll \gg \mathrm{G}_{2} \ll \gg \mathrm{G}_{3} \ll \ggg \ldots \ldots \ldots \ldots \ldots . . \ll \gg \mathrm{G}_{\mathrm{m}-1} \ll \gg \mathrm{G}_{\mathrm{m}}$. where m is any finite nonnegative integer.

Or

If $\mathrm{n} \geq 3$ is represent the number of vertices of similar 2-regular graphs. Then the continuous merging is possible for finitely many similar 2-regular graphs.

Proof: We know that the smallest 2-regular graph contains three vertices and the continuous merging is possible for smallest 2regular graph. Thus the continuous merging is possible for $n=3$. (By Theorem 1: The continuous merging is possible for finitely many smallest 2-regular graphs.)

Now, if the number of vertices $n>3$. Then by the definition of merging technique, the continuous merging is possible for those types of 2-regular graphs.

Hence the continuous merging is possible for all types of similar 2-regular graphs.

Conclusion

The above results are show that the continuous merging is possible for finitely many smallest 2-regular graphs and also the continuous merging is possible for all types of similar 2-regular graphs.

References

1. Duckworth William, Manlove David F. and Zito Michele (2005). On the approximability of the maximum induced matching problem. J. Discrete Algo., 3(1), 79-91.
2. Weisstein E.W. (2014). Two-Regular Graph. Wolfram Research, Inc. http://mathworld.wolfram.com/TwoRegularGraph.html. 30/07/2017.
3. Munkres James R. (2010). Topology. PHI Learning Private Limited, New Delhi, India, 264-288. ISBN: 978-81-203-246-8
4. Munkres James R. (2010). Topology. PHI Learning Private Limited, New Delhi, India, 102-103. ISBN: 978-81-203-246-8
5. Wilson Robin J. (1996). Introduction to Graph Theory. International E- Publication, England, 18. ISBN: 0-582-24993-7
6. Sakalle Maneesha and sursudde Arun (2016). A note on the merging of regular graphs. Souvenir from 6th International Science Congress. Pune, India, 8th-9th Dec., 145.
7. Weisstein Eric W. (2017). Nonnegative Integer. http://mathworld.wolfram.com/ NonnegativeInteger.html 31/07/2017.
8. Munkres James R. (2010). Topology. PHI Learning Private Limited, New Delhi, India, 33. ISBN: 978-81-203-246-8
9. Weisstein Eric W. (2017). Principal of Strong Induction. http://mathworld.wolfram.com/PrincipalofStrongInduction. html 31/07/2017.
