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Abstract  

This paper presents the optimal control applied to a non

control strategy of the SIVR model to minimize the infection in minimum cost is discussed with help of three controls and are

derived and analyzed by considering different objective functions with the same contro

demonstrated by the analytical findings, the effect of choosing different objective function on the state variables with the 

of numerical results. This study show that different strategies using different objective

significant effect to slow down the epidemic.
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Introduction 

The communicable diseases models have a very long history of 

support in public health planning and policy creation. The 

largest part of epidemics control is, if sufficient and timely steps 

(e.g. vaccination, treatment and awareness about disease etc.) 

are taken within the duration of the epidemic. Many of the 

communicable diseases are tending to endemic form due to 

shortage of appropriate interventions to control the diseases 

spread.  Consequently, there is a necessity of suitable steps 

towards control of the disease outbreak, essentially those for 

which treatment is available. It is good to prevent the disease 

occurrence than treating infective individual. However, diseases 

like Influenza, Cholera, Tuberculosis and Measles have an 

approved vaccine and medical treatment Gaff1

treatment and vaccine are exist still the diseases are reaching the 

state of endemic. The significant tools to analyze and control the 

outbreak of the epidemics are mathematical modeling. The 

study on the optimal control of infectious diseases by 

constructing mathematical model for the analysis is

from literatures 
2-5

 etc. Granish et al
2
,   has driven mathematical 

model through simulations for HIV model, and obtained the 

results that wide spread HIV testing followed by an immediate 

start of antiretroviral therapy for the infected individuals is a 

strategy towards controlling HIV epidemic 

Wang et al.
6
 has designed an improved model for Hepatitis B 

virus (HBV) for control of the epidemic and investigate the 

model solution with different control strategy to reduce the 

disease induced death cases.  

 

Pontryagin et al.
7  

 has introduced the optimal control theory by 

using Pontryagins maximum principle and it 

Fleming and Rishel
8
. Optimal control theory is

applied in a many different fields and explored mathematical

models. In case of epidemics including HIV is studied by 
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This paper presents the optimal control applied to a non-linear mathematical SIVR epidemic model. To investigate optimal 

control strategy of the SIVR model to minimize the infection in minimum cost is discussed with help of three controls and are

derived and analyzed by considering different objective functions with the same control variables in all strategies. It is 

demonstrated by the analytical findings, the effect of choosing different objective function on the state variables with the 

of numerical results. This study show that different strategies using different objective functions for an epidemic results in a 

significant effect to slow down the epidemic. 

Optimal control theory, Pontryagin’s maximum principle, Epidemics. 

The communicable diseases models have a very long history of 

support in public health planning and policy creation. The 

largest part of epidemics control is, if sufficient and timely steps 

(e.g. vaccination, treatment and awareness about disease etc.) 

taken within the duration of the epidemic. Many of the 

communicable diseases are tending to endemic form due to 

shortage of appropriate interventions to control the diseases 

spread.  Consequently, there is a necessity of suitable steps 

he disease outbreak, essentially those for 

which treatment is available. It is good to prevent the disease 

occurrence than treating infective individual. However, diseases 

like Influenza, Cholera, Tuberculosis and Measles have an 

treatment Gaff1. Even though the 

treatment and vaccine are exist still the diseases are reaching the 

tools to analyze and control the 

mathematical modeling. The 

of infectious diseases by 

constructing mathematical model for the analysis is reviewed 

,   has driven mathematical 

model through simulations for HIV model, and obtained the 

results that wide spread HIV testing followed by an immediate 

start of antiretroviral therapy for the infected individuals is a 

strategy towards controlling HIV epidemic in the population. 

has designed an improved model for Hepatitis B 

virus (HBV) for control of the epidemic and investigate the 

model solution with different control strategy to reduce the 

introduced the optimal control theory by 

using Pontryagins maximum principle and it is developed by 

theory is effectively 

explored mathematical 

ng HIV is studied by 

Adams et al.
9
, Makinde and Okosun

and pandemic influenza and vector

Blayneh
13

. Okosun et al.
11

 investigated the elementary role of 

optimal control theory to discover the effect of t

observation of unaware infective on HIV/AIDS epidemic. 

 

The model considered in the study is 

model of an epidemic by the inclusion of vaccination, time 

dependent control parameters and assuming that the infective 

individuals may spread the epidemic wildly. Sunmi et al.

one of his article has discussed the comparison of objective 

functions with different control strategies, but in this study, 

optimal control analysis is carried out and discussed optimal 

control analysis qualitatively for the resulting model with 

different strategies of objective functions with all controls and 

observed the variation in the infection with respect to objective 

functions.  

 

The results are presented and compared through numerical 

simulations. Rest of the paper continues with four section

Section 2 deals with formulation of mathematical model, in 

Section 3  the model with optimal control is analyzed, in Section 

4  has the numerical summary and concluding remarks are 

presented in Section 5. 
 

Mathematical Model 

The population at time ‘t’ is sub-divided into the following sub

populations, Suppose 'S' denotes the  susceptible number at time 

‘t’, ’I’ denotes the infective number at time ‘

number of vaccinated individuals at time ‘

number recovered individuals  with permanent immunity at time 

‘t’ and 'D' represents the number of disease induced death 

individuals at time ‘t’. The dynamics of population considered 

above are mathematically shown and expressed by following 

system of nonlinear differential equ

___________ ISSN 2320-6047 
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SIVR epidemic model. To investigate optimal 

control strategy of the SIVR model to minimize the infection in minimum cost is discussed with help of three controls and are 

l variables in all strategies. It is 

demonstrated by the analytical findings, the effect of choosing different objective function on the state variables with the help 

functions for an epidemic results in a 

, Makinde and Okosun
10

, Okosun et al.
11

, Joshi
12

 

pandemic influenza and vector–borne diseases studied by 

investigated the elementary role of 

optimal control theory to discover the effect of treatment and 

observation of unaware infective on HIV/AIDS epidemic.  

The model considered in the study is a continuation of SIR 

model of an epidemic by the inclusion of vaccination, time 

dependent control parameters and assuming that the infective 

uals may spread the epidemic wildly. Sunmi et al.
14

, in 

one of his article has discussed the comparison of objective 

functions with different control strategies, but in this study, 

optimal control analysis is carried out and discussed optimal 

control analysis qualitatively for the resulting model with 

erent strategies of objective functions with all controls and 

observed the variation in the infection with respect to objective 

The results are presented and compared through numerical 

simulations. Rest of the paper continues with four sections; 

Section 2 deals with formulation of mathematical model, in 

Section 3  the model with optimal control is analyzed, in Section 

4  has the numerical summary and concluding remarks are 

divided into the following sub-

' denotes the  susceptible number at time 

’ denotes the infective number at time ‘t’, ‘V’ denotes the 

number of vaccinated individuals at time ‘t’, 'R' represents the 

iduals  with permanent immunity at time 

' represents the number of disease induced death 

’. The dynamics of population considered 

above are mathematically shown and expressed by following 

system of nonlinear differential equations: 
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Where, 
 0)0(,0)0(,0)0(,0)0(,0)0( ≥≥≥>> DVVIS

and ).()()()()()( tDtRtVtRtStN ++++=  
The parameters 

used in the model are described in Table-1. 

 

Table 1: Parameters description of the model  

Parameter Description 

Λ The recruitment rate.  

β  The infection rate. 

γ  The recovery rate. 

α  The vaccination rate. 

δ  The disease induced death rate. 

ω  The rate of vaccinated immunity wanes. 

µ Natural death rate from each class. 
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For the solution of equation (2), we have 
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           (3) 

where: )0(N  is a sum of the states initial values

)0()0(),0(),0( RandVIS . As 
,)(,

µ

Λ
→∞→ tNt

then 

µ

Λ  is the upper bound of )(tN . However if 
µ

Λ
>)0(N , then 

the solution approaches asymptotically to the feasible region 

Ω  defined by  







 Λ

≤≤++≤ℜ∈=Ω +
µ

NRVIDNRVI 0:),,,,( 5  (4) 

 

Hence, it sufficient to prove the positivity of states and 

understand the dynamics of the epidemic model. 

Optimal Control Analysis 

In this paper, dynamics of SIVR model solutions of epidemic 

are examined through various objective functions. Here it is 

necessary to consider time dependent controls and then 

continued by applying Prontrygins maximum principle to 

investigate effective control in a finite time. Controls which are 

introduced in the model system (1) are as follows: i. Control 

]1,0[1 ∈u
 

is the successful practice of non-pharmaceutical 

interventions which are susceptible to protect themselves from 

attack of the disease on a time interval ]  ,0[ ft . ii. Control 

]1,0[2 ∈u  is the hospitalization of infective individuals in the 

time interval ]  ,0[ ft . iii. Control ]1,0[3 ∈u
 
refers to successful 

practice of prevention of transmission in the time interval ]  ,0[ ft    

 

The Mathematical SIVR Model with controls is given as 

follows (5) 
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where:  
.0)0(0)0(,0)0(,0)0(,0)0( ≥≥≥>> DandRVIS  

 

Controlling the serious threat of any epidemic requires (our goal 

is) to minimize the infection and cost of controls during the 

course of an epidemic. In the literature different objective 

functions were considered to analyses the effect of control 

variables on various epidemic models. Here our aim is to 

suggest best control course of action to control the serious threat 

of an epidemic. For that purpose explored constructed the 

objective functions of different behavior with three control 

variables. This approach helps to investigate best optimal 

strategy of the objective functions to control the epidemic. 
 

Optimal control strategy of minimization of infective: It is 

introduced into the model (4), controls u1, u2 and u3 as a time 

dependent controls to control the outbreak of an epidemic. To 

determine optimal strategy for controlling the epidemic, it is 

considered the objective functional J1, which is of minimization 

of the number of infective and cost of controls.  
 

dttu
B

tu
B

tu
B

tIAtututuJ

tf
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where 1A , 
2

1B , 
2

2
B  and 

2

3B  are non-negative weights and the 

terms )(
2

2

1

1 tu
B , )(

2

2

2

2 tu
B , and )(

2

2

3

3 tu
B  are the costs 

(5) 
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associated with the controls u1, u2 and u3  respectively. Here it is 

chosen the quadratic costs on the controls, by review of the 

literature of epidemic. The optimal controls 
*

2

*

1 ,uu  and 
*

3u   are 

such that 
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is the control set. The Pontryagins maximum principle

7
 must 

satisfied by optimal control problem is the necessary conditions 

to check.  This principle converts equation (5) and (6) into a 

problem of minimization of Hamiltonian H, with respect to
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Where: DRVIS and λλλλλ ,,,  are the adjoint variables 

associated with the states variables S, I, V, R and D 

respectively. The system of adjoint variables is found by 

differentiating (8) with respect to the associate state variable. 

 

Theorem 1: Optimal controls )()(),(
*

3

*

2

*

1 tuandtutu
 

solution )()(),( *** tVandtItS of the consequent state 

system (5) that minimizes ))(),(),(( 3211 tututuJ over the 

control set Γ , ∃  adjoint variables 
DRVIS λλλλλ ,,,,

 
satisfying.
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Proof: An optimal control existence is followed from the 

corollary 4.1 of Fleming and Rishel
8
, since the integrand J1 is a 

convex function of )()(),( 321 tuandtutu
, 

Lipschitz property 

is satisfied by a priori boundedness of the state system and  state 

solutions, with respect to the state variables. The adjoint system 

is  
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Due to the priori boundedness of the state system and the 

Lipschitz structure results of the ordinary differential equations, 

it is obtained the uniqueness of the optimal control for small tf. 

The uniqueness of the optimality system is used for obtaining 

the optimal control uniqueness, which consist of equation (9) 

and (10) with characterization (11). To certify the uniqueness of 

the optimality system there is a limitation on the length of time 

interval. The certification of the uniqueness of optimality 

system has a limitation on the duration of time interval.  This 

smallness restriction of the duration on time is due to the 

contradictory time operations of equation (9) and (10). The state 

system has initial values where as the adjoint system has 

terminal values. To minimize Hamiltonian with respect to the 

controls at the optimal point, it is derived with respect to 

)(and)(),( 321 tututu  on the control set Γ , and equating to 

zero. 
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By standard control arguments involved in the bonds on the 
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Similarly for u1 and   u2 
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Hence the theorem. 

 

Optimal strategy of minimization of infective and 
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individuals: Here it is considered the objective functional J2 
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the costs associated with the controls u1, u2 and u3  respectively. 

Here it is chosen the quadratic costs on the controls, by referring 

the literature of epidemic. With the considered objective 

function J2 (u1, u2, u3) in (18) is implied to minimize the 

infectives, susceptible and cost of controls 
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Where DRVIS and λλλλλ ,,,  are the adjoint variables 

associated with the states variables S, I, V, R and D 

respectively. The system of adjoint variables is found by 

differentiating (20) with respect to the associate state variable. 
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Proof : On the same lines as Theorem 1. 

 

Optimal strategy of minimization of infective and 

susceptible: Here it is considered the objective functional of 

minimizing infective and susceptible with all controls 
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epidemic. With the above given objective functional J3 (u1, u2, 

u3). The optimal controls 
*

2

*

1 ,uu  and 
*

3u   are such that 
  

),,(min),,( 3213
),,(

*

3

*

2

*

13
321

uuuJuuuJ
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where 









=≤≤
=Γ

3,2,1,1)(0|],0[functionon

continuouspiecewiseis)(|),,( 3213

itut

tuuuuJ

if

i
   



Research Journal of Mathematical and Statistical Sciences ____________________________________________ ISSN 2320-6047  

Vol. 5(2), 5-13, February (2017) Res. J. Mathematical and Statistical Sci. 

 International Science Community Association  9 

is the control set. The Pontryagins maximum principle
7
 must 

satisfied by optimal control problem is the necessary conditions 

to check. This principle converts equation (5) and (25) into a 

problem of minimizing point wise a Hamiltonian H, with 

respect to )(  and )(),( 321 tututu  

Then the Hamiltonian function is constructed as  

))((

))()())(1((

))()()())(1(

))()()())(1()()())(1((

))()()())(1()()())(1((

)(
2

)(
2

)(
2

)()(

3

2

31

21

2

3
32

2
22

1
1

21

tI

tRtItu

tVtVtStu

tItItItutItStu

tVtstStutItStu

tu
B

tu
B

tu
B

tSAtIAH

D

R

V

I

S

δλ

µγλ

µωαλ

δµγβλ

ωµαβλ

+

−++

−−++

−−+−−+

+−+−−−Λ+

++++=     (27) 

 

Where DRVIS and λλλλλ ,,,  are the adjoint variables 

associated with the states variables S, I, V, R and D 

respectively. The system of adjoint variables is found by 

differentiating (27) with respect to the associate state variable. 

 

Theorem 3: Optimal controls )()(),( 321 tuandtutu solution 

)()(),( ***
tVandtItS of the corresponding state (5) that 

minimizes ))(),(),(( 3213 tututuJ over control set Γ , ∃  

adjoint variables 
DRVIS λλλλλ ,,,,

 satisfying. 

i

H

dt

d i

∂

∂
=−

λ                                      (28) 

 

with condition of transversality 
DRVISiwherettttt fDfRfVfIfS ,,,,,0)()()()()( ====== λλλλλ

 

0
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))(1()()(1())(1()())(1(

311

21212

=

=

=

−−++−−+−=
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dt

d

dt

d

dt

d

tutStuA
dt

d

tutItututItuA
dt

d

D

R

R

V
V

DRIIs

I

VISSS
S

λ

µλ
λ

µλ
λ

δλλλγλλβ
λ

αλβλµλαλβλ
λ     (29)

 
Further, 
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Proof : On  same lines as Theorem 1. 

 

Numerical Analysis 

In this section, it is discussed the numerical simulations of the 

optimal system and parallel results of varying the objective 

functional 
321 ,, JJJ .  Parameter values and description are 

considered by refering various articles on epidemics given in 

Table-2. Numerical results to the  state system (5) and the 

adjoint systems (12,22,29) are carried out using parameters from 

the Table-2  with the weight factors A = 20, B = 10, C = 10 and 

initial conditions S(0) = 1,000 ,I(0) = 10, V (0) = 0, R(0)=0. 

 

Table-2: Parameter description and values  

Baseline 

parameter 
Description Value Reference 

Λ 
The recruitment rate of 

susceptible. 
10 Assumed 

β  The infection rate 0.009 Assumed 

γ  The recovery rate 0.01 Assumed 

α  The vaccination rate 0.15 Assumed 

δ  
The death rate of disease 

induced individuals. 
1 Assumed 

ω  
The rate of vaccinated 

immunity wanes. 
0.5 Assumed 

µ  Natural death rate  0.02 Assumed 

 

The algorithm which is considered for simulation is the 

forward-backward scheme starting with an initial supposition 

for the set of optimal controls. The Runge-Kutta fourth order 

method is used to solve forward in time for the state variables. 

Then, to solve adjoint system with given final conditions (7) 

state variables and initial supposition of the controls backward 

in time are used, again employing a Runge-Kutta method of 

fourth order. The controls are updated and used to solve the 

state system (5) and adjoint system (12, 24) and (29). When the 

current state, adjoint variable and control values converge 

sufficiently the iterative process terminates. The results of three 

different strategies are computed numerically by considering the 

results of the associated control system (5), and adjoint systems 

(12, 24) and (29). 
 

Implications of optimal control strategy with objective of 
minimization of infective:  With this strategy, the successful 

practice of non-pharmaceutical interventions control u1, the 

successful practice of prevention of transmission by 

immunization control u2 and the treatment of infected 

individuals control u3 are involved for the optimization of 

objective functional J1. In Figure-1(a), results the decrease in 

the infective cases with help of control strategy. The control 

profile is shown in Figure-1(b), control u1 remains at the upper 

bound till the final time; control u2 stays  at the lower bound up 

to  the end time; control u3 is at the upper bound up to 700 units 

of time before gradually dropping down to the lower bound at 

the terminal time. 
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Figure-1: Simulation result of the model solution (a) and control profile (b) of objective function 1J . 

 

Implications of optimal control strategy with objective of 

minimization of infective and susceptible, and maximization 

of vaccinated and recovered individuals: With this strategy, 

the successful practice of non-pharmaceutical interventions 

control u1, the successful practice of prevention of transmission 

by immunization control u2 and the treatment of infected 

individuals  control u3 are involved for the optimization of 

objective functional
 
J1. In Figure-2(a), it is clear that control 

strategy results in a significant decrease in the infections 

number. Figure-2(b) shows the control profile of controls, 

control  u1 
 and u3 remains at the upper bound up to 925 units of 

time before gradually dropping to the lower bound at the final 

time; control  u2  remains at the upper bound up to the final time. 
 

Implications of optimal control strategy with objective of 

minimization of infective and susceptible: With this strategy, 

the successful practice of non-pharmaceutical interventions 

control u1, the successful practice of prevention of transmission 

by immunization control u2 and the treatment of infected 

individuals control u3 are involved for the optimization of 

objective function J3.  In Figure-3(a), it is observed that control 

strategy results in increase in the number of infections as 

comparing to second strategy, but same number of infections as 

that of strategy first. The control profile given  in the  Figure 

3(b), has control u1 remains at the upper bound up to 850 units 

of time then suddenly reached lower bound at 900; control u2 

remains at the lower bound up to 200 units of time and then 

gradually increasing up to 0.7 at 600 units of time and then 

again gradually decreasing to the lower bound till final time; 

control u3 is at the upper bound up to 750 units of time before 

gradually dropping down to the lower bound at the final time. 
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Figure-2: Simulation result of the model solution (a) and control profile (b) of objective function  J2. 

 

 
Figure-3: Simulations result of the model solution (a) and control profile (b) of objective function J3. 

 
 

Three different strategies are used to optimize objective 

functions 321 ,, JJJ . In Figure 4(a), it is observed that the 

susceptible are gradually decreasing up to 150 in all the 

strategies; in Figure 4(b), the variation in infective individuals is 

observed, and the second strategy with objective function 2J  

has minimum infection as compared to the first and third 

strategies with 31 , JJ  objective functions for same model with 

same controls. In Figure 4(c), it is observed that only strategy 

2J  has shown variation vaccinated individuals but other two 

strategies are at the lower bound till the final time. This is 

because in the first and third strategies minimization of 

vaccinated individuals were not considered. In Figure 4(d), it is 

observed that recovered individuals are minimum for strategy 

2J because of less number of infection and for other two 

strategies recovered individuals are maximum and both seem to 

be same. In Figure 5, it is observed that cost function 2J  is at 

minimum level till the final time compared to other two cost 

functions 
321 ,, JJJ . 



Research Journal of Mathematical and Statistical Sciences ____________________________________________ ISSN 2320-6047  

Vol. 5(2), 5-13, February (2017) Res. J. Mathematical and Statistical Sci. 

 International Science Community Association  12 

           

        
Figure-4: All states of the model for three strategies of objective functions. 

 
Figure-5: Cost functional for three different strategies of objective functions. 
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Conclusion 

The optimal control analysis of any mathematical epidemic 

model mainly depends on the number of control variables 

chosen and objective functions selected. The aim of this study  

explore how analysis of optimal control shows a discrepancy 

with respect to state variables of the model by taking into 

consideration different objective functions. The conditions for 

optimal control of the SIVR model for different strategies are 

derived and analyzed by considering different objective 

functions with the same controls 
321 ,, uuu  in all strategies. The 

study demonstrates the analytical findings regarding the effect 

of choosing different objective function on the state variables 

with the help of numerical results. This study can suggest a 

public health planner to choose a strategy from different 

strategies that needs to decrease the infected individuals as well 

as associated cost of controls for implementation of it. Also, 

from numerical analysis it is very clear that choosing different 

strategies for controlling the disease results in considerable 

change in the cost on implementation. 
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