
 Research Journal of Mathematical and Statistical Sciences ______________________________ E-ISSN 2320–6047 
 Vol. 4(2), 6-12, March (2016) Res. J. Mathematical and Statistical Sci. 

 

 International Science Community Association        6 

Critical Evaluation of Four Differencing Schemes for A Steady Convection-
Diffusion Problem 

Arti Kaushik 
Department of Mathematics, Maharaja Agrasen Institute of Technology, Delhi, India 

arti.kaushik@gmail.com 

Available online at: www.isca.in, www.isca.me 
Received 6th February 2016, revised 28th February 2016, accepted 10th March 2016 

 
 
 

Abstract 
A steady convection diffusion problem is taken to compare the behavior and accuracy of four discretization schemes namely, 
Central Differencing Scheme, Upwind Differencing scheme, Hybrid Differencing Scheme and QUICK scheme. This well-
known problem is solved numerically and solutions are discussed graphically. It is known that false diffusion arises in 
multidimensional flow problems only. Hence discretization errors may be investigated only in one-dimensional problems. 
Thus, the model taken to compare four schemes is a one dimensional flow model. It is validated that central differencing 
scheme give fairly good results for small Peclet number only, whereas upwind differencing scheme may be used for both 
large and small Peclet number. Hybrid scheme gives better results than QUICK scheme which works very well with large 
Peclet number but not for small Peclet number.  
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Introduction 
In many applications of applied sciences and engineering we 
frequently arrive at Convection-diffusion problems. The 
presence of the convection term makes the discretization of the 
equation difficult which results in inconvenience to work out 
the accurate numerical solution of the convection diffusion 
problem. For convection-dominated problems we need to apply 
special techniques so as to get stable and bounded solution. 
Better schemes to are still required to approximate the 
convection term and substantial research has been directed 
towards finding ideal discretisation schemes. 
 
There are many schemes to solve convection-diffusion 
equation. Many of the schemes are given in the classic text by 
Patankar1 Ferziger and Peric give a contemporary discussion of 
finite volume methods for convection diffusion problem2. 
Versteeg and Malalasekera provide a thorough discussion of 
many discretization schemes, but they do not discuss the case 
of non-uniform meshes3. Majumdar provide a basic analysis of 
convection modeling of the one and two dimensional 
convection-diffusion equation4. Wesseling discusses different 
approximations to the convective terms and also strongly 
investigates finite volume method5. Compararitive and critical 
studies of various methods are done by Patel et al., Lazarov et 
al. Shukla et al., Stynes etc6-11. 
 
In this paper we discuss and compare the Central Difference 
Scheme, Upwind Differencing Scheme, Hybrid Differencing 
Scheme and QUICK Scheme for a steady one dimensional 
convection-diffusion problem. The one-dimensional 

convection-diffusion equation is a compact model of transport 
of heat, mass and other passive scalars. By applying the finite 
volume method to this equation we are open to use different 
schemes for approximating the convection term. We are 
considering only four schemes and the analysis only involves 
one model equation. 
 
Discretization Algorithm 
In the absence of sources, steady convection and diffusion of a 
property ф in a one dimensional domain is sketched in figure-1. 
The governing equation is  

 ud d d
dx d x d x

     
 

              (1) 

 
which on integration over the control volume of fig (1) gives 
 

 
Figure-1 

Control volume for one-dimensional problem 
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    d duA uA A Ae w dx dxe w

               
   

        (2) 

 
The flow satisfy the continuity. Therefore 
 

0
d u

dx


              (3) 

 
Integration of continuity equation gives 
( ) ( ) 0e wuA uA              (4) 
 
For convenience, we take  

andF u D
x





 
  

 
And define cell Peclet number as  

e
FP
D

              (5) 

 
which is a dimensionless number which is significant in the 
study of transport phenomena. Now the values of the variables 
F and D at both the cell faces can be written as 

   ,e we w
F u F u    

and 

,e w
e w

PE WP

D D
x x 

   
    
   

 

 
To write down discretised equations, we need to approximate 
the terms in Equation-2 
Assuming  

w eA A A    

 
The convection diffusion Equation-2 can be written as 

( ) ( )e e w w e E P w P WF F D D                   (6) 
 
and the integrated Equation of continuity (4) as 

0e wF F    
 
Central Differencing Scheme (CDS): The cell face value of 
property ф for a uniform grid, can be written as 

( ) / 2
( ) / 2

e P E

w W P

  
  

 

 
  

 
Substitution of the above expressions into the convection term 
of Equation-6 yields 

    ( ) ( )
2 2

e w
P E W P e E P w P W

F F D D               

 
This can be rearranged to give the standard form as  

P P W W E Ea a a               (7) 
 

where: 

Wa  
Ea  

Pa  

2
w

w
FD 

 
2

e
e

FD 
 ( )W E e wa a F F    

 
Upwind Differencing Scheme (UDS): The upwind 
differencing scheme considers the direction of the flow, which 
lacks in the central differencing scheme. When the flow is in 
positive direction ( 0, 0)w eF F   the cell face values are 
calculated using nodal values shown in figure-(2)  
 

 
Figure-2 

Upwind scheme for positive flow direction 
 
The upwind scheme sets 

,w W e P       

 
And the discretised convection diffusion equation given by 
Equcation-6 after rearrangement gives 

     w w e e w P w w W e ED F D F F D F D          
  (8) 

 
Equation-8 can be written in usual general form as  

P P W W E Ea a a              (9) 
 
where: 

 
Wa  

Ea  
Pa  

eF >0,

wF >0 
w wD F  

eD  ( )W E e wa a F F    

eF < 0,

wF < 0 
wD  e eD F  ( )W E e wa a F F    

 
Hybrid Differencing Scheme (HDS): The basis of Hybrid 
Differencing scheme is the combination of Central differencing 
and Upwind Differencing Schemes. It employs Central 
Differencing Scheme for small Peclet number (Pe ≤ 2) and 
Upwind scheme for large Peclet number (Pe ≥ 2). The general 
form of discretised equation in Hybrid differencing scheme is 

P P W W E Ea a a              (10)
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where 
 

Wa  
Ea  

Pa  

max , ,0
2
w

w w
FF D      

 
max , , 0

2
e

e e
FF D       

 
( )W E e wa a F F    

 
Quadratic Upwind Differencing Scheme (QUICK): For cell 
face values, this scheme uses a three point upstream weighted 
quadratic interpolation. The general form of discretised 
equation in QUICK scheme is 

P P W W E E WW WW EE EEa a a a a                (11)
 

 
Where 

( )P W E E E W W e wa a a a a F F       

Wa  
WWa  

Ea  
EEa  

 

6 1
8 8

3 1
8

w w w e e

w w

D F F

F

 



 

 

 
1
8 w wF

  
 

 

3 6 1
8 8

1 1
8

e e e e e

w w

D F F

F

 



  

 

 
 1 1

8 e eF
 

 
and  

1 for 0 1 for 0
0 for 0 0 for 0

w w e e

w w e e

F and F
F and F

 
 

   

      

 
Convection and Diffusion Equation: Numerical 
Results 
Let us assume the convection and diffusion of the property ф 
through a one dimensional domain shown by figure-3. 

 
Figure-3 

The discretization domain 
 
The governing equation is given by Equation. (1) and the 
boundary conditions are фA=1 and фB=0. Other data to be used 
are length L= 1.0 m, ρ =1.0 Kg/m3, Г = 0.1 Kg/m.s. The domain 
is divided into ten equal control volumes, so we have δx=0.1 m. 
The analytical solution to Eqn.(1) is  
 

 
 

0

0

exp / 1
exp / 1L

ux
uL
 

  
 


  

   (12) 

We will discuss and compare the schemes with the analytical 
result for different values of cell Peclet number by taking 
different values of flow velocity u.  
 
The comparison of the analytical solution (AS) with the 
solution;ns obtained using Central Differencing Scheme, 
Upwind Differencing Schemes, Hybrid Differencing Scheme 
and QUICK scheme is given in Table 1,2 and 3 for different 
values of Peclet number. 

 
Table-1 

Comparison of results obtained using different schemes with the analytical solution for u=0.1 m/s and Pe = 0.1 

Node 
Central 

Differencing 
Scheme 

Upwind 
Differencing 

Scheme 

Hybrid 
Differencing 

Scheme 

QUICK 
Scheme 

Analytical 
solution 

(AS) 

Error in 
CDS 

Error in 
UDS 

Error 
in HDS 

Error in 
QUICK 

0.05 0.9709 0.9687 1.00 0.9389 0.9702 - 0.0007 0.0015 - 0.0298 0.0313 

0.15 0.9067 0.9031 1.00 0.8072 0.9058 0.0027 0.0027 - 0.0942 0.0986 

0.25 0.8356 0.8309 1.00 0.6616 0.8347 0.0038 0.0038 - 0.1653 0.1731 

0.35 0.7572 0.7515 1.00 0.5268 0.7561 0.0046 0.0046 - 0.2439 0.2293 

0.45 0.6704 0.6641 1.00 0.4041 0.6693 0.0052 0.0052 - 0.3307 0.2652 

0.55 0.5746 0.5680 1.00 0.2947 0.5733 0.0053 0.0053 - 0.4267 0.2786 

0.65 0.4686 0.4623 1.00 0.2002 0.4672 0.0049 0.0049 - 0.5328 0.2670 

0.75 0.3515 0.3460 1.00 0.1219 0.3499 0.0039 0.0039 - 0.6501 0.2280 

0.85 0.2221 0.2181 1.00 0.0618 0.2204 0.0023 0.0023 - 0.7796 0.1586 

0.95 0.0790 0.0774 0.0476 0.0216 0.0772 - 0.0002 - 0.0002 0.0476 0.0556 
Abs. 
error      0.0336 0.0344 3.2827 1.7853 
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Table-2 
Comparison of results obtained using different schemes with the analytical solution for u= 3 m/s and Pe = 3 

Node  
Central 
Differencing 
Scheme 

Upwind 
Differencing 
Scheme 

Hybrid 
Differencing 
Scheme 

QUICK 
Scheme 

Analytical 
solution 
(AS) 

Error in 
CDS 

Error in 
UDS 

Error 
in HDS 

Error in 
QUICK 

0.05 1 1 1 1 1 0 0 0 0 

0.15 1 1 1 1 1 0 0 0 0 

0.25 1 1 1 1 1 0 0 0 0 

0.35 1 0.9999 1 1 1 0 0.0001 0 0 

0.45 0.9998 0.9996 1 1 1 0.0002 0.0004 0 0 

0.55 1.0008 0.9984 1 1 1 - 0.0008 0.0016 0 0 

0.65 0.9960 0.9938 1 1 1 0.0040 0.0062 0 0 

0.75 1.0200 0.9750 1 1 0.9994 -0.0206 0.0244 -0.0006 -0.0006 

0.85 0.9000 0.9000 1 1 0.9889 0.0889 0.0889 -0.0111 -0.0111 

0.95 1.5000 0.6000 0.6000 1 0.7769 -0.7231 0.1769 0.1769 -0.2231 

Abs 
error      0.8376 0.2923 0.1886 0.2348 

 
Table-3 

Comparison of results obtained using different schemes with the analytical solution for u=10 m/s and Pe = 10 

Node 
Central 

Differencing 
Scheme 

Upwind 
Differencing 

Scheme 

Hybrid 
Differencing 

Scheme 

QUICK 
Scheme 

Analytical 
solution 

(AS) 

Error in 
CDS 

Error 
in UDS 

Error 
in 

HDS 

Error in 
QUICK 

0.05 0.9117 1 1 0.9698 1.00 0.0883 0 0 0.0302 

0.15 1.1760 1 1 0.9615 1.00 -0.1760 0 0 0.0385 

0.25 0.7794 1 1 0.9599 1.00 0.2206 0 0 0.0401 

0.35 1.3750 0.9999 1 0.9609 1.00 -0.3750 0.0001 0 0.0391 

0.45 0.4816 0.9999 1 0.9573 1.00 0.5184 0.0001 0 0.0427 

0.55 1.8217 0.9999 1 0.9686 1.00 -0.8217 0.0001 0 0.0314 

0.65 -0.1884 0.9998 1 0.9322 1.00 1.1884 0.0002 0 0.0678 

0.75 2.8267 0.9986 1 1.0498 1.00 -1.8267 0.0014 0 -0.0498 

0.85 -1.6960 0.9848 1 0.6700 1.00 2.6960 0.0152 0 0.33 

0.95 5.0880 0.8333 0.8333 1.8973 0.9933 -4.0880 0.16 0.16 -0.904 

Abs. 
error      11.9991 0.1771 0.16 1.9255 
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Graphical Representation of Convergence: The graphical 
representation of solutions obtained in Table-1,2 and 3 are 

shown in figure-4,5 and 6 respectively for different values of 
Peclet number. 

 
Figure-4 

Comparison of results obtained using different schemes with the analytical solution for u=0.1 m/s and Pe = 0.1 

 
Figure-5 

Comparison of results obtained using different schemes with the analytical solution for u= 3 m/s and Pe = 3 
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Figure-6 

Comparison of results obtained using different schemes with the analytical solution for u=10 m/s and Pe = 10 .The 
oscillatory numerical solution of Central Difference Scheme shown are due to the existence of negative aE or aW 

 
Discussion  
In present study, four discretization schemes, namely Central 
Differencing Scheme, Upwind differencing Scheme, Hybrid 
Differencing Scheme and QUICK Schemes are compared for 
one dimensional steady state convection diffusion problem. The 
results of computations presented in this paper corroborate the 
following conclusions. 
 
For small values of Pe both Central Differencing Scheme and 
Upwind Differencing Schemes give results that are close to the 
analytical solutions. 
 
The appearance of ‘wiggles’ begins at Pe =3, in Central 
Differencing solutions. At this value of cell Peclet number, the 
east coefficient in the scheme becomes negative which violates 
the requirement of boundedness and lead to unrealistic 
solutions as shown in Table-1 and 3 where the solutions even 
lie outside the range established by the boundary values. All 
other Schemes gives very accurate and realistic results for Pe 
=3. 
 
For Pe =10, Hybrid differencing scheme gives same results as 
exact solution except near boundary B.  
 
Numerical solutions to Equation-1 attained with the upwind 
difference scheme and hybrid difference scheme never oscillate 
for any value of Pe whereas solutions obtained with the central 
difference scheme on a uniform mesh will oscillate if Pe > 2. 

Conclusion  

There are a lot of schemes to compute the numerical solution of 
the convective-diffusion problems and similar problems. In 
their paper, Wang and Hutter compare at least twelve methods 
for the discretization of convection diffusion problem12. The 
central difference scheme seems to yield accurate results for 
low cell Peclet number, but for Pe > 2, the scheme produces a 
solution that seems to oscillate about the exact solution. By 
refining the meshes, one can reduce the cell Peclet number and 
overcome the problem of oscillations. As one of the aim of 
numerical modeling is to obtain solutions which are mesh-
independent, one can opt for a simple modification of Central 
Differencing Scheme to Upwind Differencing scheme. The 
Upwind scheme considers the direction of the flow but its 
accuracy is only first order on the basis of Taylor series 
truncation error. Due to this, diffusion errors arise in the 
solution of multi dimensional problems, when the flow is not 
aligned with the grid lines. So, this modification is not entirely 
suitable for accurate flow calculations. The hybrid difference 
scheme of Spalding (1972) exploits the favorable properties of 
upwind and central difference schemes and gives physically 
realistic solutions. It is highly stable, but it also has only first 
order accuracy. To retain the accuracy, higher order 
discretisation schemes may be employed. The QUICK scheme 
of Leonard (1979) has third order accuracy in terms of Taylor’s 
series truncation error. It is conservative also, but in some cases 
it may give unstable and unbounded solutions. The QUICK 
scheme is therefore conditionally stable. However, if it is used 
carefully, QUICK scheme can give very accurate results. 
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