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There are many subclasses of univalent functions. The objectives of this paper is to introduce new classes and we have 
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Introduction 

Let �denote the class of functions  ���� of the form ���� � � � ∑ 	
∞
�� �
 	,										
 � 	0				                                
 

which are univalent in the unit disc 

 � � 	 �� ∶ � ∈ �	��	|�	| � 1	� 
 

Definition 1.1: A function ���� ∈ � is said to be close to 

convex of order �	�0	 � � � 1�  if  
 ���� ′����  � for all � ∈ � 

 

A function  ���� ∈ � is said to be in the subclass 

starlike function if  

 �� !"#′�"�#�"� $  �	, � ∈ �  0 � � � 1 

 

Definition 1.2: A function ���� ∈�is said to be %��� of convex  function if  

 �� &1 '	�� ′������� (  �	, � ∈ � 

 

Definition 1.3: Let ���� � 	� � ∑ 	
∞
�� �∑ 	
∞
�� �
 	,					
 � 	0	, )
 � 	0				 then the convolution is 

defined as  
 ���� ∗ +��� � 	� � ∑ 	
∞
�� )
�
                           
 

Definition 1.4 :  If � and + are regular in �
subordinate to + , denoted by � ≺ + or ����
exist a Schwarz function �, which is regular in 0 and |-���| � 1	, � ∈ �	such that ���� � +
In particular if + is univalent in�  , we have the equivalence ���� ≺ +���	if and only if ��0� � +�0�  and 
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of the form  

                                (1) 

is said to be close to 

is said to be in the subclass 3��� of 

is said to be in the subclass 


 	,						+��� � � �
then the convolution is 

                        (2) � , we say that � is � 	≺ +���, if there 

, which is regular in � with -�0� �+�-���� , � ∈ � . 

, we have the equivalence 

and ���� ⊂ +��� 

Definition 1.5: We say that a function .�/, 0, 1�if it satisfy  

 ��′��� ' 1���′′���1��′��� ' �1 � 1����� ≺ 1 ' /�1 ' 0�
 

for	0 � 1 � 1 , �1 � 0 � / � 1 

 

Furthermore a function ���� ∈ �	is said to belong to the class 2.�/, 0, 1�	if and only if   �� ′���
 

Theorem 1.1: A function   ���� �
is in	.�/, 0, 1� if and only if  

 

567 ' 17� � 217 � �1 � 1� �	 90:7 ' 1∞


�� � �/ � 0� 
 

Proof: Suppose	���� is in.�/, 0, 1
 

Therefore from (2) we have  

 ;��� � ��′��� ' 1���′′���1��′��� ' �1 � 1����� ≺
 ;��� � 1 ' /-���1 ' 0-��� 
 |-���| � 1 

 

<< = ��′��� ' 1���′′���1��′��� ' �1 � 1�����> � 1/ � 0 ? ��′��� ' 1���′′���1��′��� ' �1 � 1�����@<<
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We say that a function ���� ∈ �	is in the class 

/�0�																																											�3� 
is said to belong to the class � � ∈ .�/, 0, 1�.	 

� � � 	� � ∑ 	
∞
�� �
 	, 	
 � 	0 

17�7 � 1�C � /	�17 ' 1 � 1�DE	

1� 

≺ 1 ' /�1 ' 0� 

>
@<< � 1 
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F "#′�"�GH"I#′′�"�JH"#′�"�J�KJH�#�"�LMH"#′�"�G�KJH�#�"�NJOM"#′�"�GH"I#′′�"�NF � 1              (4) 

 ��′��� ' 1��� ′′��� � 1��′��� � �1 � 1����� 
 

� 	�5M7 ' 17� � 217 � �1 � 1�N∞


�� 	
�
 

	/M1��′��� ' �1 � 1�����N � 0M��′��� ' 1��� ′′���N 
 

� �/ � 0�� '59�/�17 ' 1 � 1� ' 0:7 ' 17�7 � 1�CD∞


�� 	
�
 

 

From (4) we have  

 P �∑ M7 ' 17� � 217 � �1 � 1�N∞
�� 	
�
�/ � 0�� ' ∑ 9�/�17 ' 1 � 1� ' 0:7 ' 17�7 � 1�CD∞
�� 	
�
P � 1 

 

Since Re (�) < |�|. We obtain after choosing the values of � on 

real axis and letting � → 1 

we get  

 

567 ' 17� � 217 � �1 � 1� � 90:7 ' 17�7 � 1�C � /�17 ' 1 � 1�DE	
∞


�� � �/ � 0� 
 

Corollary 1.1 If	���� ∈ .�/, 0, 1�then  

 	
 � �/ � 0�7 ' 17� � 217 � �1 � 1� � 90:7 ' 17�7 � 1�C � /�17 ' 1 � 1�D 
 

and the equality holds for  ����� � � �/ � 0�7 ' 17� � 217 � �1 � 1� � 90:7 ' 17�7 � 1�C � /�17 ' 1 � 1�D�
 

 

Theorem 1.2: A function   ���� � 	� � ∑ 	
∞
�� �
 	, 	
 � 	0 

is in 2.	�/, 0, 1� if and only if 

5�M7��1 � 21� ' 17R � 7�1 � 1�N � /M�17� � 7�1 � 1�N � 0M7�∞


�� ' 17��7 � 1�N�	
 � �/ � 0� 
 

Proof: Suppose	���� is in 2.�/, 0, 1� 
 

If and only if ��′��� is in .�/, 0, 1� 
 

Let +��� � 	��′��� 
 

Therefore from (1.1) we have  

 P �+′��� ' 1��+′′��� � 1�+′��� � �1 � 1�+���/M1�+′��� ' �1 � 1�+���N � 0M�+′��� ' 1��+′′���NP � 1				 
 P �∑ M7��1 � 21� ' 17R � 7�1 � 1�N	
∞
�� �
�/ � 0�� ' ∑ �/M�17� � 7�1 � 1�N ' 0M7� ' 17��7 � 1�N�	
�
∞
�� P� 1									 

Since Re (�) < |�|. We obtain after choosing the values of � on 

real axis and letting � → 1 we get  

 

5�M7��1 � 21� ' 17R � 7�1 � 1�N � /M�17� � 7�1 � 1�N � 0M7�∞


�� ' 17��7 � 1�N�	
 � �/ � 0� 
 

Corollary 1.2: If	���� ∈ 2.�/, 0, 1� then  

 	
 � �/ � 0�M7��1 � 21� ' 17R � 7�1 � 1�N � /M�17� � 7�1 � 1�N � 0M7� ' 17��7 � 1�N 
 

and the equality holds for  

 ���� � � � �/ � 0�M7��1 � 21� ' 17R � 7�1 � 1�N � /M�17� � 7�1 � 1�N � 0M7� ' 17��7 � 1�N�
 

 

Inclusion Relation and Neighbour Properties  

Definition-2.1:  Let � � 0 and ���� � 	� � ∑ 	
∞
�� �
  be 

the function in the  �7, S� �neighborhood  of a function  ���� 
defined as  

T
U��� � 	 V+ ∈ � ∶ +��� � � �5)
∞


�� �
and	57|	
 � )
|∞


�� � SZ 
 

For the identity function [��� � �, we have  

T
U�[� � 	 V+ ∈ � ∶ +��� � � �5)
∞


�� �
and	57|)
|∞


�� � SZ 
 

Definition 2.2:   The function ���� � 	� � ∑ 	
∞
�� �
  is said 

to be a member of the subclass  

 .�/, 0, 1�	if there exist a function + ∈ .�/, 0, 1� such that  

 \����+��� � 1\ � 1 � ]		, 0 � ] � 1 

 

Theorem 2.1: Let 0 � 1 � 1 , �1 � 0 � / � 1 . Then  

 .�/, 0, 1� ⊆ .�/K, 0K, 0�	where	�1 � 0K � /K � 1	and  L_J`KJ` � 0K and /K � 2� � 1 

 

Where:   � � 	 / � 0��1 ' 1��1 � 20 ' /�� � �/ � 0� 
 

Proof: Let ���� � 	� � ∑ 	
∞
�� �
 be in the class .�/, 0, 1�   
 

Therefore by Theorem 1.1:
 

567 ' 17� � 217 � �1 � 1� � 90:7 ' 17�7 � 1�C � /�17 ' 1 � 1�DE�/ � 0� 	
∞


�� � 1								�5� 
 

Now we want to find the values of /K , 0K such that �1 � 0K �/K � 1 , and  
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5�7 � 1 � M0K7 � /KN��/K � 0K� 	
∞


�� � 1																																													�6� 
 

The inequality  �5� imply �6� if  �7 � 1 � M0K7 � /KN��/K �0K�� 67 ' 17� � 217 � �1 � 1� � 90:7 ' 17�7 � 1�C � /�17 ' 1 � 1�DE�/ � 0� � c 

 

Simplifying �7� we get  0K � /K0K � 1 � 7 � 1c � 1 			,			7 � 2	,																																																								�8� 
 

It is clear that the right hand side of �8�  decreases as 7 

increases and maximum for 7 � 2 

 

Thus �8� is satisfied provided  

 0K � /K0K � 1 � / � 0��1 ' 1��1 � 20 ' /�� � �/ � 0� � �															�9� 
 

fixing	/K in �9�,	 we get  /K � �1 � � � 0K 

 

For �1 � 0K	, we have /K � 2� � 1 

 

The proof of theorem is complete. 

 

Theorem 2.2: Let	0 � 1 � 1, �1 � 0 � / � 1 . Then  2.�/, 0, 1� ⊆ 2.�/K, 0K, 0�	where�1 � 0K � /K � 1 and  L_J`KJ` � 0K and /K � 2� � 1 

 

Where  � � 	 / � 0��1 ' 1��1 � 20 ' /�� � �/ � 0� 
 

Proof: Let ���� � 	� � ∑ 	
∞
�� �
 be in the class .�/, 0, 1� 
.  

 

Therefore by Theorem 1.2:
 

∑ 69
I�KJ�H�GH
gJ
�KJH�DJL9JH
IJ
�KJH�DJOM
IGH
I�
JK�NE�LJO� 	
∞
�� � 1                (10) 

 

Now we want to find the values of /K , 0K such that �1 � 0K �/K � 1 , and  

57�7 � 1 � 0K7 ' /K��/K � 0K� 	
∞


�� � 1																																															�11� 
 

The inequality  �10� imply �11� if  
�
JKJMO_
JL_N��L_JO_� �69
I�KJ�H�GH
gJ
�KJH�DJL9JH
IJ
�KJH�DJOM
IGH
I�
JK�NE�LJO� � c  (12) 

 

Simplifying �12� we get  /K � 0K1 � 0K � 7 � 1c � 1 			,			7 � 2	,																																																								�13� 
 

Note that the right hand side of �13�  decreases as 7 increases 

and maximum for 7 � 2 

 

Thus �13� is satisfied provided  0K � /K0K � 1 � / � 0��1 ' 1��1 � 20 ' /�� � �/ � 0� � �														�14� 
 

fixing	/K in �14�,	 we get  /K � �1 � � � 0K 

 

For �1 � 0K	, we have /K � 2� � 1 

 

The proof of theorem is complete. 

 

Theorem 2.3: Let S � 2�/ � 0��1 ' 1��1 � 20 ' /� 
 

Then  .�/, 0, 1� ⊂ T
U�[� 
 

Proof: Let���� � 	� � ∑ 	
∞
�� �
  be in the class .�/, 0, 1� 
 

Then ∑ 67 ' 17� � 217 � �1 � 1� � 90:7 ' 17�7 � 1�C �∞
��/�17 ' 1 � 1�DE	
 � �/ � 0�	  �1 ' 1��1 � 20 ' /�5	
∞


�� � �/ � 0� 
 

Therefore 

5	
∞


�� � �/ � 0��1 ' 1��1 � 20 ' /�																																																		�15� 
 

Also for |�| � i 
j� ′���j � 1 ' |�|57	
∞


�� � 1 ' i57	
∞


��  

 

From �15�  we have  j� ′���j � 1 ' i 2�/ � 0��1 ' 1��1 � 20 ' /� 
 

From above inequalities we get  

57	
∞


�� � 2�/ � 0��1 ' 1��1 � 20 ' /� � S 

 

Therefore � ∈ T
U�[� 

(7) 
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Theorem 2.4: Let S � �/ � 0��1 ' 1��1 � 20 ' /� 
 

Then  2.�/, 0, 1� ⊂ T
U�[� 
 

Proof: Let ���� � 	� � ∑ 	
∞
�� �
 be in the class 2.�/, 0, 1� 
Then ∑ �M7��1 � 21� ' 17R � 7�1 � 1�N � /M�17� �∞
��7�1 � 1�N � 0M7� ' 17��7 � 1�N�	
 � �/ � 0�  
 

That is  

2�1 ' 1��1 � 20 ' /�5	
∞


�� � �/ � 0� 
 

Therefore 

5	
∞


�� � �/ � 0�2�1 ' 1��1 � 20 ' /�																																															�16� 
 

Also for |k| � i 

j� ′���j � 1 ' |�|57	
∞


�� � 1 ' i57	
∞


��  

 

From �16�  we have  j� ′���j � 1 ' i 2�/ � 0�2�1 ' 1��1 � 20 ' /� 
 

From above inequalities we get  

57	
∞


�� � �/ � 0��1 ' 1��1 � 20 ' /� � S 

 

Therefore  � ∈ T
U�[� 
 

Theorem 2.5: Let +��� � 	� � ∑ )
∞
�� �
 be in the class .�/, 0, 1� and  

 l � 1 � S2& �1 ' 1��1 � 20 ' /��1 ' 1��1 � 20 ' /� � �/ � 0�( 

 

Then T
U��� ⊂ .�/, 0, 1, l� , 0 � 1 � 1 , �1 � 0 � / � 1 , 0 � l � 1 

 

Proof: � ∈ T
U��� then by definition we have  

57|	
 � )
|∞


�� � S 

 

Then  

5|	
 � )
|∞


�� � S2 

 

Since  + ∈ .�/, 0, 1� , we have  

5	
∞


�� � �/ � 0��1 ' 1��1 � 20 ' /�																																																		�17� 
 

Therefore  \����+��� � 1\ � ∑ |	
 � )
|∞
��1 � ∑ )
∞
��  

� S2& �1 ' 1��1 � 20 ' /��1 ' 1��1 � 20 ' /� � �/ � 0�( � 1 � l 

 

Then by DEFINITION 2.2, we get  � ∈ .�/, 0, 1, l� 
 

Theorem 2.6: Let +��� � � � ∑ )
∞
�� �
 be in the class 2.�/, 0, 1� and  l � 1 � S & �1 ' 1��1 � 20 ' /�2�1 ' 1��1 � 20 ' /� � �/ � 0�( 

 

Then T
U��� ⊂ 2.�/, 0, 1, l� , 0 � 1 � 1 , �1 � 0 � / � 1 

, 0 � l � 1 

 

Proof:  Similar to THEOREM 2.5 

 

Conclusion 

Here we have defined two classes .�/, 0, 1� and 2.�/, 0, 1�. 
We have obtained coefficient estimate. With the help of 

Theorem 1.1 we have investigated Inclusion Relation and 

Neighbour Properties for these two classes. 
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