
 Research Journal of Mathematical and Statistical Sciences 

Vol. 4(10), 10-15, November (201

 

 International Science Community Association

Admissible Estimation of a Finite Population Total under PPS Sampling

1Department of Statistics, Sardar Patel University, Vallabh Vidyanagar 388 120, India
2St. Xevier’s College, Gujarat University, Ahmedabad

Available online at: 
Received 24th August

 

 

 

Abstract  

The probability proportion to size (PPS) and with replacement estimator is inadmissible since it depends on multiplicity. An 

improve estimator is available but it is too complicated. Using the 

the distinct units of the sample selected with PPS sampling, is constructed which includes a generalized difference estimator

of the population total. Moreover, using the limiting Bayes risk method it i

comparison of the suggested estimator, a generalize regression estimator 

discussed. Using real populations, a small scale Monte Carlo simulation is carried ou

found that the suggested estimator has performed very well for most of the real populations under investigation.
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Introduction 

Consider a finite population U � �1,… , N� containing N units. 

Let	y� denote the value of the character under study for the ith 

unit. It is desired to estimate the populations total 

on the basis of a sample. When sampling n units with 

probability proportional to size (pps), with replacement after 

each draw (ppswr for brevity), the finite population total may be 

estimated by the Hansen-Hurwitz estimator Y

where p� is the probability of selecting the unit occurring at the 

ith draw
1
. Basu presents for this design an unbiased estimator 

Y
� � ∑ C� y��� p���⁄υ
���  where υ is the number of distinct units in 

the sample, the suffix �i� indicates the ith distinct unit in the 

sample and C� involves cumbersome computation as n increases, 

is uniformly more efficient than Y
��
2
. This estimator is not 

identical with Y
��� � ∑ y��� υp���⁄υ
��� . In fact, 

not unbiased. In view of the simplicity of 	Y
���
studied the properties of it

3
. 

 

The pps estimator Y
�� is inadmissible as it depends on 

multiplicity. Using Rao-Blackwellization, Pathak gives an 

improved (rather complicated) estimator which does not admit a 

simple non-negative variance estimator as does the pps 

estimator
4
. Moreover the gain in efficiency is

small, unless the sampling fraction is large. Thus, the resulting 

estimator is less useful in practice than the original pps 

estimator.  

 

Godambe shows that the linear estimator Y
� �
is admissible for	β�� � 1 p���

′⁄ , where p���
′  denotes the probability 

that the ith unit is included in the sample
5
. In this article we 

suggest a generalized difference (GD) estimator based on 
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containing N units. 

denote the value of the character under study for the ith 

unit. It is desired to estimate the populations total Y � ∑ y��∈�  

When sampling n units with 

probability proportional to size (pps), with replacement after 

r brevity), the finite population total may be 

Y
�� � ∑ y� np�⁄�
��� , 

is the probability of selecting the unit occurring at the 

. Basu presents for this design an unbiased estimator 

is the number of distinct units in 

indicates the ith distinct unit in the 

involves cumbersome computation as n increases, 

. This estimator is not 

. In fact, Y
��� is in general 

Y
���, Subrahmanya 

is inadmissible as it depends on 

Blackwellization, Pathak gives an 

improved (rather complicated) estimator which does not admit a 

negative variance estimator as does the pps 

. Moreover the gain in efficiency is considered to be 

small, unless the sampling fraction is large. Thus, the resulting 

estimator is less useful in practice than the original pps 

� ∑ β��y���
υ
���  of Y 

denotes the probability 

. In this article we 

suggest a generalized difference (GD) estimator based on 

distinct units of the pps sample. This estimator includes 

Godambe estimator. In the next section, we obtain 

estimator and establish its admissibility using the Bayes risk 

method given in Lehmann and Casella

comparison of the Bayes estimator, in Section 3, we discuss 

generalize regression (GREG) estimator

estimator
8
 for distinct units. In Section 4 a small scale Monte 

Carlo simulation is carried out for the comparison of estimators. 

Final conclusions are given Section 5.

 

Denote the random variable z 

�y�  e�� p�			with	probablities		⁄ p�
e+�� �

�

�
∑ e� p�⁄�∈�  and e � ∑ e��∈� . 

 

We suggest the following estimator:

Y
,- � Y
�� . /e  e+��0 
where  e � �e�, … , e1�  is a vector of known real numbers.
 

In particular, if	e� � βx�, for	i �
predetermined constant and x� is the known value for unit i of an 

auxiliary variable, then Y
,- takes the form
 

Y
,- � Y
�� . β4X  X
��6		  
 

Now onwards, we assume that s is a fixed effective sample of 

size n,		i.e., s is a collection of 

�s: 8ixed	efective	size	of	s � n�. It has been shown by Basu that 

the order statistic T � >y���, y�?�, …
y���, y�?�, … , y��� are distinct values of y variable in sample, 

arranged in ascending order of their unit

the notation, we use y�, … , y� in place of 

sake of comparison of the suggested estimator we first discuss 

the following two estimators. 
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Random Regression Coefficient 

In marketing, industrial organization and transportation 

economics, hundreds of papers use random coefficient models
9
. 

In this section, assuming random regression coefficient, we 

construct, following Bolfarine, a Bayes estimator to estimate the 

population total with squared error loss function
10

. 

 

The Bayed Estimator: Let	t�d�	denote an estimator of Y, 

where t depends on y only through d � ��i, y��: i ∈ s�.	Consider 

the following normal superpopulation model ξ: 
 

y�, … , y1	are independently distributed with joint prior density, 

given  θ � �β, h�,		  

 

f�y|θ D� ∝ FG H⁄

∏ JK
L H⁄

K∈M
exp� h∑ �y�  βx��? 2z�⁄�∈� �	                     (2) 

 

where	x� > 0, 	z� > 0	�Q � 1,… , R� are known and  ∞ < T <
∞	UVW	ℎ > 0		are unknown parameters. 

 

Further, assume that the conjugate prior distribution of	θ is 

normal-gamma
11

 with the density 

 

g�θ|ϕ D� ∝hδ(�Z) ?⁄ exp [−hn\ 4β − β\6? 2⁄ ] h^Z ?⁄ exp�−hm\ a\ 2⁄ �	      (3) 

 

Where:	ϕ = 4n\, β\, m\, a\6 is a vector of known parameters 

such that n\ ≥ 0,m\ ≥ 0, a\ > 0, UVW	a(n\) = 0	if	n\ = 0,=1	if	n\ > 0. 
 

The model defined by (2) and (3) is designated as the Bayes 

model. For the Bayes model the Bayes prediction risk of t with 

respect to squared error loss function is defined as  

 E(t − Y)? = EθcEξ(t − Y)?|θ Dd 
 

Here, Eξ(∙ |θ D) fVξ(∙ |θ D)h and Eθ(∙)4Vθ(∙)6 denote, respectively, 

expectations (variances) over the distributions of y	andθ. 
 

Since the posterior distribution of θ given d is found to be the 

normal-gamma with the density given in (3) with 

ϕ� = (n�, β�, m�, a�) in place of ϕ,  

Where:  

n� = n\ +i x�? z�⁄�∈�  

β� = >n\β\ + (n� − n\)βjB n�⁄  m� = m\ + n� + δ(n\) − δ(n�) m�a� = m\a\ +i 4y� − βjx�6? z�k�∈� + n\(1 n\ n�⁄ )4βj − β\6? 

and 

βj =i x�y�z��∈� i x�?z��∈�l  

 

Under squared error loss, the Bayes predictor of Y is the 

posterior expectation of Y given d, that is, 

 

t� = E/Y|dD0 = i y��∈� +i Eθm∉� Eξ(y�|d, θ D) 
 

Since the posterior mean is β� the Bayes predictor is given by  

 

t� = ∑ y��∈� + �ZβZo(�Lp�Z)βj�L 4∑ xmm∉� 6                                       (4) 

 

The Bayes prediction risk associated with t� is given by 

 E(t� − Y)? = E/V(Y|dD)0 = EcVθEξ(Y|θ, dD) + EξVθ(Y|θ, dD)d 
 

= E qVθ rβi xm|d, ϕ Dm∉� s + Eξ r1hi zm|d, ϕ Dm∉� st 
 

= a�m�m� − 2 ui zm + 1n� vi xmm∉� w?m∉� x 
 

For a diffuse prior distribution, i.e. n\ → 0	and	m\ → 0, the 

limit of the Bayes predictor (4) is 

 t�� = ∑ y��∈� + βj4∑ xmm∉� 6 = ∑ y��∈� + ∑ zK{K JK⁄K∈|∑ zKH JKkK∈| 4∑ xmm∉� 6	     (5) 

 

Admissibility of }~�: To prove admissibility of t�� we use the 

limiting Bayes risk method. A more detailed account of this 

method is given by Lehmann and Casella. Without loss of 

generality assume that h is known and equals to 1. For Model 

(2) the prediction risk of t with respect to squared error loss is 

defined by  

 Rξ(β, t) = Eξ(t − Y)?	∀	β ∈ �  

 

A predictor t\ ∈ ℭ, a class of predictors of Y, is said to be 

admissible in ℭ with respect to ξ if there exists no predictor t� ∈ ℭ such that  

 Rξ(β, t�) ≤ 	Rξ(β, t\)		∀	β ∈ �	 < Rξ(β, t\)for	at	least	one		β ∈ � 

 

Theorem. Suppose that y�, given	β, are independently 

distributed as N(βx�, z�), i = 1, . . , N and the prior distribution of 

β over � is N(µ, τ?). Under this model, the Bayes predictor of Y 

is given by 

 

t� =i y��∈� + ∑ x�y� z� + µσ? τ?⁄⁄�∈�∑ x�? z� +⁄�∈� σ? τ?⁄ vi xmm∉� w	
 

Moreover, the limit of this Bayes predictor is (5) and is 

admissible. 
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Proof. It is not difficult to show that under the assumed model t� is the Bayes predictor. Further, to establish the admissibility 

of t�� ,	suppose t�� 	is not admissible. Then there exists t∗ such 

that  

Rξ(β, t∗) ≤ 	Rξ(β, t��) =i zm + 4∑ xmm∉� 6?∑ x�? z�⁄�∈�m∉� 					∀	β ∈ �			 
 

and strict inequality for at least one	β ∈ �.			By continuity of Rξ(β, t), there exist ε > 0 and		β′ < β′′, such that  

 Rξ(β, t∗) ≤ 	Rξ(β, t��) − ε				∀	β′ < T < β′′ 
 

Let Rξ∗(β, 	t∗, τ) be the average risk of 	t∗ with respect to the 

prior distribution N(0, τ?) and let Rξ(β, t��, τ) be the Bayes 

prediction risk t�� with	µ = 0.	 It follows that 

 

Rξ(β, t�, τ	) = i zm + 4∑ xmm∉� 6?∑ x�? z� + 1 τ?⁄⁄�∈�m∉�  

 

Hence 

 

�ξ(β,���)p�ξ∗(β,	�∗,τ	)�ξ(β,���)p�ξ(β,��,τ	) =
L√Hπτ� >�ξ(β,���)p�ξ(β,�∗)B∞�∞ �z�>pβH ?τH⁄ B�β
4∑ z��∉| 6Hq L∑ �KH �KkK∈| p L∑ �KH �K�L τH⁄kK∈| t   

 

≥
1√2π ε� >exp>− β? 2τ?⁄ BdβBβ

′′

β
′

4∑ xmm∉� 6?(∑ x�? z�⁄�∈� )p�/τ∑ x�? z� + 1 τ?⁄⁄�∈� 0p� 

 

The integrand converges monotonically to 1 as τ → ∞ and by 

the Lebesgue monotone convergence theorem the integrand 

converges to β
′′ − β′,	and consequently the ratio converges to ∞. 

Thus there exists τ < ∞ such that Rξ�β, tB, τ) > Rξ
∗(β, 	t∗, τ), 

which is a contradiction since tB is the Bayes predictor. It 

follows that tLB is admissible. 
 

A more general Bayes estimator of Y can be obtained from tLB 

by shifting the origin of y-values, i.e., substituting 

y
i
= y

i
− ai	for	i = 1, … ,N and taking	zi = xi wi		⁄ as  

 

tLB
∗ = ∑ y

ii∈s + ∑ aji∉s + ∑ wi(yipai)i∈s∑ wixii∈s
4∑ xjj∉s 6			                         (6) 

 

In particular, for the choices 

 	wi = (1 − np
i
) np

i
⁄  and xi = np

i
 the above estimator reduces to 

 

tLB
∗ =i y

i

np
is

+ vi ai
U

−i ai

np
is

w 

 

This is identical to the GD estimator, given in (1) for 

ai = βxi, for	i = 1, . . ,N.   
 

Regression coefficient	is fixed-unknown 

Two well-known types of regression estimators have appeared 

in the literature, namely the generalized regression (GREG) 

estimator) and the optimal (OPT) estimator for estimating finite 

population means or totals of survey variables. The asymptotic 

optimality of the GREG estimator requires assumed working 

model to be true and hence the efficiency of it is vulnerable if 

model is misspecified. On the contrary, in the OPT estimator no 

super population model is used and its asymptotic optimality is 

a strictly design based property. 

 

The Optimal Estimator:  The generalized difference (GD) 

estimator (1) has a design-variance  

 

Vp4Y
GD6 = Vp4Y
HH6 + β2
Vp4X
HH6 − 2β	Covp4Y
HH,X
HH6  (7) 

 

Where:   
 

Covp4Y
HH ,X
HH6 = N2∑ ∑ ∆ijjϵUiϵU y
i
xj                     (8) 

 

with 
 ∆ij= (1 p

i
⁄ − 1)/n	if	i = j	and	 = −1/n	if	i ≠ j.  

 

Here, Vp4Y
HH6 and Vp4X
HH6 denote variances of the HH 

estimators of the y and x variables, respectively, and these 

expressions can be deduced from (8) by obvious modifications. 

 

The variance (7) is minimized by assuming 

β = Covp(Y
HH ,X
HH) Vp(X
HH).k 	The optimum value of β can be 

estimated in many ways. If we take HH estimators of variances 

and covariance between unbiased estimators	Y
HH and X
HH, a 

design consistent estimator of β is given by 

 

β� = covp(Y
HH,X
HH)
vp4X
HH6 = ∑ ∑ ∆� ijjϵsiϵs y

i
xj∑ ∑ ∆� ijjϵsiϵs xixj

 

 

Where:  

 

∆� ij= 1

n2p
i
2

if	i = j	and	 = − 1

n2(n − 1)p
i
p

j

if	i ≠ j 

 

Then replacing β by β�	in Y
GD, we get  
 

Y
OPT = Y
HH + β�4X − X
HH6                                            (9)   
 

The main drawback of this estimator is that it requires 

estimating sampling variances and covariance. In this case the 

optimum variance is given by 
 

min	V4Y
OPT6 = f1 − ρp
2h 	V4Y
HH6 

 

Where:  ρ
p
= Covp(Y
HH ,X
HH) �Vp4Y
HH6Vp(X
HH)k . 
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The GREG Estimator: One method of using auxiliary 

information available at estimation stage is through regression 

estimation. For a single auxiliary variable the GREG estimator it 

is written as 

 

Y
GREG = Y
HH + β�4X − X
HH6                               (10)              

 

Where: β� = 4∑ xi
2 p

i
η

i
ks 6p14∑ xiyi

p
i
η

i
⁄s 6 is a consistent 

regression estimator of β for the superpopulation model  

 

Eξ(Yi) = βxi,Vξ(Yi) = σ2η
i
	and	Cξ4Yi,Yj6 = 0		for i ≠ j ∈ U	 

 

Where: β and σ2 > 0 are the parameters, η
i
 are known constants. 

Here Eξ,Vξ	and	Cξ	denote expected value, variance and 

covariance under the model, respectively. Särndal et al.
7
 

reported more thorough coverage of the GREG estimator. This 

estimator is model-assisted estimator. 

 

Simulation study and Comparison of Estimators 

In this section, the estimators tLB, Y
OPT	and		Y
GREG, given in 

(5), (9) and (10), respectively, were compared empirically on 8 

natural populations given below.  

 

For this using the pps sampling scheme, a sample of size n is 

drawn from each of the population listed in Table-1 and the 

estimators	tLB, Y
OPT	and		Y
GREG were computed for each 

sample. This process was repeated M = 5000 times and the 

performance of the estimators was evaluated in terms of relative 

percentages bias (RB %) and relative efficiency (RE). Table-2 

reports RBs and REs under the pps sampling. 

 

For an estimator Y
,	its relative percentage bias (RB %) was 

calculated as 

 

RB4Y
6 = 100 ∗ fY
 − Yh Yk  

 

and the relative efficiency in percentage (RE %) as 

 

RE4Y
6 = 100 ∗MSEsim (Y
HH) MSEsim(⁄ Y
) 
 

Where: 

Y
 = ∑ Y
 j
M
j�1 M⁄ 	and MSEsim4Y
6 = ∑ 4Y
 j − Y62M

j�1 (M − 1)k   

 

Noteworthy observations from Table-2 are: i. The absolute 

values of RBs of all estimators are within reasonable range. ii. 

Y
OPT performs well as compared to Y
GREG except population 4. 

iii. Overall the suggested Bayes estimator tLB
∗  is the best 

performer. 

 

Remark: Empirically it is observed that the performance of the 

estimator Y
GREG is identical to Y
OPT under the assumption 

V(y
i
) ∝ xi for all study populations under consideration. 

 

Table-1 

Study Populations 

Population Source Y X Z N n 

1 
Murthy

13 

(p.127-130) 
Number of Cultivators Number of Persons Area in Sq. miles 128 20 

2 
Murthy

13
 

(p.127-130) 

Workers at household 

industry 
Number of Persons Area in Sq. miles 128 20 

3 
Murthy

13
 

(p.127-130) 
Number of  cultivators 

Number of  

house-holds 
Area in Sq. miles 128 20 

4 
Murthy

13
 

(p.127-130) 

Number of Persons 

(1961) 

Number of Persons 

(1951) 
Area in Sq. miles 128 20 

5 
Murthy

13
 

(p.129-130) 
Number of  cultivators 

Number of Persons 

(1951) 
Area in Sq. miles 25 05 

6 
Sandal et al.

7
 

1992 

Real estate value 

According to 1984 

assessment 

1985 population 1975  population 25 05 

7 
Murthy

13
 

(p.127) 
Number of  cultivators 

Cultivated  

Area  (in Acres) 
Area in Sq. miles 20 05 

8 
Murthy

13
 

(p.399) 

Area under wheat in 

1964 

Area under wheat in 

1963 

Cultivated Area in 

1961 
34 07 
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Table-2 

RE (%) and RB (%) of estimators 

Population �
�� �
��� �
� ¡� }~�∗  

1 
100 

(2.20)
* 

173 

(0.08) 

143 

(-0.59) 

214 

(-0.18) 

2 
100 

(3.29) 

471 

(-3.82) 

256 

(-2.14) 

395 

(-3.23) 

3 
100 

(2.20) 

144 

(0.38) 

106 

(-0.48) 

162 

(-0.43) 

4 
100 

(5.34) 

7962 

(-0.03) 

8316 

(0.009) 

11315 

(-0.84) 

5 
100 

(2.11) 

307 

(1.46) 

306 

(0.71) 

446 

(-0.36) 

6 
100 

(-1.21) 

108 

(1.85) 

106 

(1.85) 

792 

(0.29) 

7 
100 

(1.13) 

112 

(0.95) 

111 

(0.91) 

143 

(-0.61) 

8 
100 

(4.23) 

7130 

(0.45) 

6421 

(0.55) 

7046 

(1.05) 

*Figures in the parentheses are the RBs of estimators. 

 

Conclusion  

In survey sampling auxiliary information about the finite 

population is often available at the estimation stage. Utilizing 

this information more efficient estimators may be obtained. 

There exist several approaches, such as model-based, 

calibration, Bayesian etc., each of which provides a practical 

approach to incorporate auxiliary information at the estimation 

stage. 

 

Hedyat and Sinha contend that it is almost imperative to 

postulate an explicit relationship between the study variable and 

the auxiliary variable and it can often be assumed that a linear 

relationship exists between the two variable
12

.  

 

In many survey populations, the relationship between iy  and 

ix  is often a straight line through the origin with a general 

variance structure v(y
i
) = σi

2 = σ2xi

g, 1 ≤ g ≤ 2, which is 

usually the case in survey populations .We have attempted to 

incorporate auxiliary information at estimation stage using 

Bayesian model. 

 

The conclusions emerging from the simulation study can be 

summarized as follow: i. Under the assumed Bayesian model, 

among the three estimators	Y
OPT, Y
GREG , and tLB
∗  with pps 

sampling, tLB
∗  is very efficient when the best linear fit goes 

through the origin and the residuals from it are small. The 

absolute values of RBs of this estimator are all within 

reasonable range. ii. Y
OPT has performed better than Y
GREG.  
 

The main drawback of this estimator is that it requires 

estimating sampling variances and covariance. However, this is 

not the problem for pps sampling. 
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