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Abstract 
In this paper we develop, analyze an E.P.Q model with the assumptions that the life time of commodity is random and follow 
a Generalized Pareto Distribution. It is assumed that demand is a function of both the time and selling price. Using the 
differential equations the instantaneous state of inventory is derived .With suitable cost consideration the total cost per unit 
and profit rate function are obtained. By maximizing the profit rate function, the optimal production quantity and optimal 
selling price are derived. The sensitivity of model with respect to the parameters and costs is done. This model is much useful 
for analyzing the situations arising at production processes dealing with perishable commodities. 
 
Keywords: E.P.Q Model, Sensitivity analysis, Generalized Pareto Distribution, Profit Rate Function. 
 

Introduction 
Recently much emphasis is given for inventory model with 
random lifetime. Nahmias, S (1982), Raafat, F (1991) and Goel 
and Giri (2001) have reviewed the perishable inventory models 
and their optimal operating strategies. Ghare and Scharader 
(1963), Shah and Jaiswal (1977), Cohen (1976), Aggarwal 
(1978), Dave and Shah (1982), Pal (1990), Kalpakam and 
Sapna (1996), Giri and Chaudhuri (1998) and others developed 
the inventory models with exponential lifetime. Tadikama1la 
(1978) developed inventory model with Gamma distribution for 
deterioration Covert and Philip (1973), Philip (1974), Aggarwal 
and Goel (1980), Hwang and Hwang (1982), Venkata Subaiah 
et.al (1999) have developed inventory models with Weibull 
distribution for lifetime of the commodity. K. Nirupama Devi 
(2001,2004) has studied the inventory models with the 
assumptions that the lifetime of the commodity follows a 
mixture of Weibull distribution. Madhavi, N (2002) has 
developed inventory models for deteriorating items, with 
exponential, Weibull and mixture of weibull lifetime 
distributions having seconds sale. John Mathews (2002) has 
developed inventory model for deteriorating items with weibull 
rate of decay and finite replenishment. 
 
Earlier researchers have not made any attempt to develop and 
analyse inventory models with Generalised Pareto distribution, 
except the work of Srinivasa Rao, et.al (2005) who developed 
the inventory models with infinite rate of replenishment. But in 
many production process the replenishment rate is finite. By 
considering the above facts an inventory model has been 
developed and analysed with Generalized Pareto Life time for 
finite rate of replenishment. The distribution function of the 

Generalized Pareto distribution is (Pickands, Hoskin et al. 
(1975))  

 

 
For c = 0 and c = 1, and this distribution reduces to the 
exponential distribution with mean a, and uniform distribution 
with range [0, a] respectively. This distribution is extensively 
used in the analysis of extreme events especially in reliability 
studies when robustness is required against heavier time or 
lighter time alternatives to an exponential distribution. Darghi-
Noubary (1989) recommends Generalised Pareto distribution 
for use as the distribution of the excess of observed value over 
an arbitrarily chosen threshold. He pointed out that, "The 
Generalised Pareto distribution arises as a class of limit 
distribution for the excess over a threshold, as the threshold 
increases towards the right hand end distribution (tail). The 
Generalised Pareto distribution is more suitable for lifetime 
distribution for some commodities like, food and vegetables, 
edible oils, natural gas etc. Using the differential equations the 
instantaneous state of Inventory is derived. The total cost 
function is obtained by considering the suitable cost and to 
minimize the optimal order quantity. 
 
Assumptions and Notations: In this section the assumptions 
and notations used in this paper are given below. i. The demand 
rate is known, ii. The lead time is zero, iii. Shortages are 
allowed and fully backlogged, iv. A deteriorated item is lost, v. 
k, finite production rate, vi. T, the fixed duration of production 
cycle is known, vii. A, the setup cost for each cycle, viii. Cost 
of placing an order is zero. 
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This assumption is made with respective to the producer’s 
perspective and we are minimizing the total production cost. 
For example in food processing industry like bakery the cost of 
placing an order with respective to production manger is 
insignificant for computing the production cost. This 
assumption simplifies the computational complexity. However 
this assumption is little deviant from the practical situations. 
Here it is also considered that the cost of placing and order is 
mixed with set up cost. 
 
The life time of commodity is random and follows a 
Gernarlized Pareto distribution having probability density 
function of the form.  

 
a: Scale parameter   
c: Shape parameter  
 
The instantaneous rate of deterioration h(t) is 

h (t) =  

Q:  The ordering quantity in one cycle. 
C:  The cost per unit. 
h: Inventory holding cost per unit per unit time. 
: The shortage cost per unit per unit time. 
 
Inventory model with constant demand as power function 
of time and selling price: In this section demand pattern is 
considered as uniform throughout the period and demand rate is 
of form  

(t) = s
Tn
tr

n

n
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where n is the index parameter and r is demand size, 10 2  
are arbitrary consists. 
Let the ordering quantity in the cycle length T be Q, the cost 
price of one unit be C, the inventory holding cost per unit time 
be h, the shortage cost per unit time be ��  

The amount of stock is zero at time t = 0. Production starts at 
t=0 and stops at t = t1. The stock attains a level S at t = t1. During 
(t1, t2) the inventory level gradually decreases mainly to meet 
up the demand and partly due to deterioration. By this process 
the stock reaches zero level at t = t2. Now storages occur and 
accumulate to the level P at t = t3. Production starts again at t = 
t3 and backlog is cleared at t = T. The cycle then repeats itself 
after time T. The schematic diagram showing the inventory 
level over time is given in figure. 

 
 
Let I(t) be the inventory level of the system at time (0 ). 
Then the differential equations describing the instantaneous 
states of I(t) over the cycle of length T are 
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With the initial conditions I (0) = 0; I (t2) = 0, I (T) = 0 
Substituting h (t) and solving the above differential equations 
(3.1) (3.2), (3.3) and (3.4), the on hand inventory at time t can 
be obtained as, 
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  t1  t  t2              (3.6) 

            t2  t  t3             (3.7) 

       t3  t  T            (3.8) 

 
The stock loss due to deterioration in the interval (0, T) is  

                  (3.9) 

The back logged demand at time t is 

B(t) =       t2  t  t3                                (3.10) 

The ordering quantity in a cycle of length T is  
 
Q = kt1 + k (T-t3);                         (3.11) 
 
The total cost per a unit time is sum of the setup cost per a unit time, the unit cost, inventory holding cost, and shortage cost, K(t1, 
t2, t3, T, s) is obtained as  

K (t1, t2, t3 T, s) = 
T
A   

 
Substituting equations (3.5), (3.6), (3.7), (3.8) and (3.11) in the above equation integrating and simplifying by neglecting higher 
power of 1/a   
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Differentiating K (t1, t2, t3, T, s) w.r.t t1 and equating to zero, we get 
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Differentiating K (t1, t2, t3, T, s) w.r.t t2 and equating to zero, we get 
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By differentiating K (t1, t2, t3, T, s) w.r.t t3 and equating to zero, we get 
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By differentiating K (t1, t2, t3, T, s) w.r.t s and equating to zero, we get 
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Solving equations (3.13), (3.14), (3.15) for various values of a, 
c, r, n, C, h, k,  the optimal values of , , t*

3 and Q*, K 
are computed. 
 
Illustration: Consider the case of deriving the economic 
production quantity, production down time and production up 
time for a food processing industry which manufactures bred 
and bun. In this industry the product is of deteriorating nature 
and the life time is random. After discussion with production 
managers and workers we collected the data on the life time of 
commodity and found that it follows a Generalised Pareto 
Distribution through a frequency curve. Assuming the life time 
of commodity follows a Generalised Pareto Distribution and 
using the data collected over a cycle period of 400 hrs, the 
deteriorating distribution parameters are estimated through the 
method of maximum likely hood estimation and the estimates 
are c = 0.2, a = 105. A chi-square test for goodness of fit also 
carried and found that the Generalised Pareto Distribution gives 
a good fit to the data. The discussion with production manger 
and manufactures revealed that the estimates for production 
cost of a unit bread , setup cost , holding cost per a unit time 
and penalty cost per a unit time are C = Rs.3, h = Rs.0.5, π = 
Rs.0.6, A = Rs. 1200, and T = 400 hrs. The demand parameters 
are also estimated as r = 550, n = 5, the rate of production per a 
hour is k = 5 units, with these parameters, using the above 
model the optimal production schedule is computed and found 
that the optimal down time is t1

* = 94.4 hrs, the optimal start-up 
time t3* = 391 hrs, with these two values the economic quantity 
for cycle is 517 units, and the minimum production cost per 
unit time is Rs. 14. From these optimal values, the production 
manger of the unit has continuing production and 
manufacturing the production scheduling. A sensitivity analysis 
is also performed for checking the effectiveness of the model 
with respect to the deteriorating parameters a , c ; demand 
parameters r , n ; cost parameters C , h , π ; and production rate 
k on optimum polices for different values of the parameters. 
The following values for the parameters are considered. 
 
A = 100, 105 ,110 ; c = -1 , 0.2 , 0.25 , 0.3 , 0.35 ; r = 550 ,560 
,570 ; n = 5 ,6 ,8 ,9 ; C = Rs. 3 ,3.5 ,4 ,4.5 ; h = Rs.0.5 ,0.52 
,0.53 ,0.55 ; π = Rs.0.6 , 0.62 , 0.63 , 0.65 ; k = 5 , 6 , 7 ,8 ; T = 
400 hrs and A = Rs. 1200. 
 
Using the equations (3.13), (3.14), and (3.15) we obtain the 
optimal values of t1, t2, and t3. By substituting these values in 
(3.12), (3.11) we computed the expected minimum cost per unit 

time and economic production quantity per cycle and presented 
in table 1. 
 
A careful perusal of table 1 reveals that the deteriorating 
parameters has a significant influence on optimal production 
scheduling as ‘a’ increases the optimal value of production 
down time and economic order quantity and minimum cost per 
unit time are decreasing and production up time is increasing, 
when other cost and parameters are fixed. With respect to the 
other deteriorating parameter ‘c’ the production up time and 
economic order quantity are increasing for an increase in c. 
However the production down time is decreasing 
insignificantly. With respect to cost parameters there is 
significant impact on the optimal values of the production 
schedule. An increase in holding cost per unit will increase the 
optimal values of startup time, shutdown time and economic 
production quantity.  
 
As the shortage cost π increases, the optimal values of the 
production down time, the production uptime, economic order 
quantity are increasing, when other parameters remain fixed. As 
the production cost of the unit increasing the optimal values of 
the production schedule behave similarly. If the demand 
parameter r increases, the optimal values of t1 is increasing, 
where as the optimal values of t3 is decreasing. With respective 
the parameter n the optimal values of t1 and Q are decreasing 
and optimal value t3 is increasing for an increase in n. This 
decrease is highly significant. So we conclude that the 
production manger effectively the estimate the parameters of 
the demand rate for optimal production scheduling.  
 
Inventory model with demand as power function of time 
and selling price and without shortages: The differential 
equations governing the instantaneous state of inventory level 
of the system at time t of the model are  
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with the initial conditions I(0)=0, I(T)=0. 
 
The on hand inventory at time t is obtained as, 
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The stock loss due to deterioration in the interval (0, T) is L (t) = kt1 - Ts
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The ordering quantity in a cycle of length T is obtained as Q = kt1       (4.6) 
 
For obtaining the optimal policies of the perishable inventory model having deterministic demand as power function of time and 
without shortages, the total cost per unit time k(t1, T) is obtained as 

K (t1, T, s) = 
T
A  

        (4.7)
 

 
Differentiating K (t1,T) with respect to t1 and equating to zero, one can get 
Differentiating K (t1, t2, t3, T) w.r.t t1 and equating to zero, we get 
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Differentiating K (t1, T) with respect to s and equating to zero, one can get  
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For various values of a, c, r and n the optimal values of t*

1 and Q* are computed by solving the equations (4.8) and (4.6). (

0,1,0 210   ) 
 
Numerical Illustration of the Model without Shortages:  In 
this section we illustrate the optimal operating policies of the 
model without shortages by applying it to a food processing 
industry with the same values for the deteriorating parameters, 
demand parameters, replenishment parameters, cost value and 
cycle time give in the example of section 4. Using the equations 
(4.8) and (4.6) we computed the optimal shutdown time, 
optimal production stopping time 181.5 hrs and the economic 
production quantity is 908 units. 
 
The comparison of with shortages and without shortage models 
for the same parameters values reveals that the economic 
production quantity of without shortage model is more than that 

of with shortages model. And production cost per unit time for 
the without shortage model is Rs.52, where as for with shortage 
model it is Rs.14. this shows that without shortage model is 
more economical than that of with shortage model. 
 
For the sensitivity of the parameters costs and cycle time on 
optimal operating policies are completed. The optimal value of 
production down time. Economic order quantity and cost per 
unit time for different values of the parameters and costs are 
shown in table 2. From table 2 it is observed that the same 
phenomenon of the earlier model is exhibited for all 
parameters. 
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Table-1 
Optimal values of t1*, t2*, t3*, K and Q* 

a c k h r C n  T t1* t2* t3* K Q* 
100 
105 
110 

0.2 5 0.5 550 3 5 0.6 400 
94.676 
94.4526 
94.238 

201.335 
203.228 
205.005 

390.888 
391.0677 
391.235 

17.313 
16.932 
16.5796 

518.9395 
516.92 
515.015 

100 
0.25 
0.3 

0.35 
5 0.5 550 3 5 0.6 400 

96.517 
98.763 
101.590 

200.4367 
199.883 
199.803 

390.8023 
390.749 
390.741 

17.324 
17.3033 
17.237 

528.5767 
540.068 
554.245 

100 
 0.2 

6 
7 
8 

0.5 550 3 5 0.6 400 
80.414 
69.5369 
61.0537 

191.567 
184.104 
178.281 

392.44 
393.705 
394.740 

21.624 
24.988 
27.675 

527.793 
530.820 
531.509 

100 0.2 5 
0.52 
0.53 
0.55 

550 3 5 0.6 400 
94.175 
93.9325 
93.459 

199.170 
198.1205 
196.083 

390.68 
390.5799 
390.3825 

17.291 
17.227 
17.2403 

517.47 
516.763 
515.38 

100 0.2 5 0.5 
550 
560 
570 

3 5 0.6 400 
94.676 
96.154 
97.615 

201.335 
202.345 
203.344 

390.888 
390. 729 
390.5725 

17.313 
17.12 
16.919 

518.9395 
527.12 
535.216 

100 0.2 5 0.5 550 
3.5 
4 

4.5 
5 0.6 400 

93.462 
92.261 
91.07 

200.65 
199.98 
199.32 

391.656 
392.425 
393.195 

17.955 
18.585 
19.263 

509.028 
499.176 
489.38 

100 0.2 5 0.5 550 3 
6 
8 
9 

0.6 400 
91.122 
86.306 
84.603 

199.297 
196.504 
195.509 

392.94 
395.648 
396.589 

12.763 
6.526 
4.29 

490.904 
453.289 
440.07 

100 0.2 5 0.5 550 3 5 
0.62 
0.63 
0.65 

400 
95.3377 
95.6634 
96.3047 

203.285 
204.2401 
206.109 

390.911 
390.925 
390.95 

17.669 
17.843 
18.1874 

522.12 
523.6915 
526.153 

105 
110 
115 

-1 
 5 0.5 550 3 5 0.6 400 

87.44762 
85.94079 

85.177 

209.7924 
211.6364 

213.60208 

391.6804 
391.84981

392.029 

16.831 
16.47413 
16.13127 

478.8108 
470.4548 
465.7476 

100 
-0.9 
-0.8 
-0.6 

5 0.5 550 3 5 0.6 400 
86.59594 
84.87407 

84.140 

211.142 
214.5348 
219.9034 

391.8045 
392.1136 
392.594 

16.944 
16.69185 
16.3384 

473.9571 
463.802 
457.726 

100 
 -1 

6 
8 
9 

0.5 550 3 5 0.6 400 
117.5535 
125.058 
126.944 

222.3467 
226.798 
227.97 

394.842 
397.624 
398.500 

23.34683 
36.44 

43.1317 

736.2674 
1019.4 
1156 

100 -1 5 
 

0.55 
0.56 
0.58 

550 3 5 0.6 400 
105.366 
105.579 

105.9857 

211.125 
210.375 
208.919 

391.803 
391.734 
391.599 

17.294 
17.3017 
17.311 

567.817 
569.228 
571.929 

100 
 

-1 
 

6 
 

0.5 
 

560 
580 
600 

3 5 0.6 400 
116.823 

115.2302 
113.4024 

221.9305 
221.0313 
220.0156 

394.6265 
394.18 
393.731 

23.0236 
12.388 
21.7714 

733.183 
726.263 
718.024 

100 -1 5 0.5 550 
4 
5 
6 

5 0.6 400 
109.193 
112.465 

115.0538 

218.0613 
220.1411 
221.88 

394.097 
395.94 
397.769 

18.6506 
20.099 
21.56 

575.480 
582.578 
586.419 

100 -1 5 0.5 550 3 
6 
8 
9 

0.6 400 
110.1317 
115.587 

117.2278 

218.61 
221.99 
223.031 

394.463 
397.19 
398.08 

12.959 
7.349 
5.405 

578.34 
591.966 
595.703 

100 -1 5 0.5 550 3 5 
0.61 
0.62 
0.63 

400 
103.56 
102.58 
102.088 

215.602 
216.0429 
216.4238 

392.128 
392.088 
392.04 

17.37 
17.529 
17.679 

559.177 
553.96 
550.213 
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Table-2 
Optimal values of t1*, K, Q* 

a c h r k C n T t1
* K Q* 

100 
105 
110 

0.2 0.5 550 5 3 5 400 
185.028 
181.559 
177.774 

57.296 
54.932 
52.891 

925.141 
907.793 
888.868 

100 
0.25 
0.3 

0.35 
0.5 550 5 3 5 400 

195.046 
207.335 
223.426 

58.098 
57.729 
55.453 

975.231 
1037.0 
1117.0 

100 0.2 
0.55 
0.6 

0.65 
550 5 3 5 400 

185.466 
185.831 
186.14 

62.031 
63.765 
71.497 

927.331 
929.156 
930.702 

100 0.2 0.5 
560 
580 
600 

5 3 5 400 
186.052 
187.991 
189.796 

57.124 
56.756 
56.359 

930.261 
939.956 
948.982 

100 0.2 0.5 550 
6 
7 
8 

3 5 400 
173.566 
162.346 
151.652 

69.49 
80.659 
90.836 

1041 
1136 
1213 

100 0.2 0.5 550 5 
4 
5 
6 

5 400 
183.425 
181.826 
180.231 

59.599 
61.882 
64.145 

917.125 
909.13 
901.157 

100 0.2 0.5 550 5 3 
6 
8 
9 

400 
173.202 
155.761 
149.085 

50.47 
40.004 
35.91 

866.011 
778.806 
745.427 

100 
105 
110 

-0.2 0.5 550 5 3 5 400 
137.084 
134.377 
132.119 

40.069 
39.21 
38.375 

685.422 
671.886 
660.597 

100 
-.19 
-.18 
-.15 

0.5 550 5 3 5 400 
137.885 
138.702 
140.389 

40.444 
40.83 
41.633 

689.423 
693.511 
701.944 

100 -0.2 
0.55 
0.6 

0.65 
550 5 3 5 400 

137.675 
138.171 
138.594 

43.26 
46.45 
49.638 

688.373 
690.853 
692.968 

100 -0.2 0.5 
560 
580 
600 

5 3 5 400 
138.568 
140.031 
144.3 

39.931 
39.782 
39.261 

692.839 
700.155 
721.502 

100 -0.2 0.5 550 
6 
8 
9 

3 5 400 
122.488 
101.299 
93.317 

48.198 
61.039 
66.209 

734.931 
810.393 
839.854 

100 -0.2 0.5 550 5 
4 
5 
6 

5 400 
134.965 
132.911 
130.916 

41.769 
43.443 
45.092 

674.824 
664.553 
654.578 

100 -0.2 0.5 550 5 3 
6 
7 
8 

400 
127.445 
120.367 
114.875 

33.373 
28.088 
23.817 

637.226 
601.835 
574.374 
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Table-3 
Sensitivity analysis with shortages 

Variation in 
parameters 

Percentage change in parameters 
-15 -10 -5 0 5 10 15 

a K 
Q 

18.67057 
525.02811 

18.17617 
523.09095 

17.7259 
521.01953 

17.313 
518.93954 

16.93229 
516.92472 

16.57967 
515.01509 

16.25185 
513.22959 

c K 
Q 

17.29271 
513.83527 

17.30045 
515.4873 

17.30723 
517.18784 

17.313 
518.93954 

17.31772 
520.74531 

17.32133 
522.60829 

17.32378 
524.53194 

k K 
Q 

13.22189 
505.2078 

14.68229 
510.74121 

16.04326 
515.25861 

17.313 
518.93954 

18.49921 
521.92879 

19.609 
524.34223 

20.64889 
526.27244 

h K 
Q 

17.28656 
525.01028 

17.31543 
522.88095 

17.3237 
520.85911 

17.313 
518.93954 

17.28477 
517.11671 

17.2403 
515.38498 

17.18071 
513.73883 

r K 
Q 

18.44719 
448.05589 

18.16132 
472.32905 

17.78149 
495.9658 

17.313 
518.93954 

16.76101 
541.22417 

16.13057 
562.79559 

15.42659 
583.6319 

C K 
Q 

16.72415 
527.91148 

16.92156 
524.91538 

17.11784 
521.92474 

17.313 
518.93954 

17.50704 
515.95978 

17.69997 
512.98543 

17.89178 
510.01647 

n K 
Q 

21.75355 
546.7895 

20.15136 
536.68634 

18.67597 
527.43712 

17.313 
518.93954 

16.05016 
511.10666 

14.87687 
503.86417 

13.78397 
497.1483 

∏ K 
Q 

15.59351 
503.32594 

16.18941 
508.784 

16.762 
513.97859 

17.313 
518.93954 

17.84396 
523.69154 

18.35623 
528.2552 

18.85104 
532.64797 

 
Table-4 

Sensitivity analysis without shortages 
Variation in 
parameters 

Percentage change in parameters 
-15 -10 -5 0 5 10 15 

a K 
Q 

67.87676 
960.76341 

63.5503 
952.17929 

60.10843 
940.15286 

57.296 
925.141 

54.93247 
907.79306 

52.89064 
888.86752 

51.083 
869.1296 

c K 
Q 

56.43737 
898.85012 

56.74887 
907.35197 

57.03587 
916.10948 

57.296 
925.141 

57.52687 
934.46789 

57.72561 
944.1126 

57.88925 
954.10127 

k K 
Q 

47.47832 
822.72876 

50.8142 
858.35673 

54.08695 
892.4896 

57.296 
925.141 

60.44108 
956.33019 

63.52182 
986.08167 

66.5313 
1014.43 

h K 
Q 

50.19003 
920.89511 

52.55929 
922.46712 

54.92793 
923.87428 

57.296 
925.141 

59.6637 
926.2879 

62.03097 
927.33066 

64.3979 
928.28301 

r K 
Q 

58.34259 
874.54306 

58.07791 
893.25077 

57.72459 
910.13507 

57.296 
925.141 

56.80327 
938.782 

56.25536 
951.14099 

55.65982 
962.37608 

C K 
Q 

56.25323 
928.75451 

56.60128 
927.54967 

56.94889 
926.34524 

57.296 
925.141 

57.64275 
923.93761 

57.989 
922.73443 

58.3348 
921.53168 

n K 
Q 

63.37632 
980.25505 

61.24601 
960.6141 

59.22127 
942.29236 

57.296 
925.141 

55.46407 
909.03594 

53.71936 
893.87076 

51.05627 
879.55524 

 
Conclusions 
This paper proposes a continues production Inventory model 
for deteriorating items with and without shortages. Here we 
constrained deterioration of economic production quantity, 
production down time, production up time, the case of 
Generalized Pareto rate of decay and time dependent demand. 

The Generalized Pareto Distribution used for life time of 
commodity also includes uniform and exponential as particular 
cases. We have utilized the differential equation and 
unconstrained optimal techniques under stochastic environment 
to obtain the solution of the model. Two examples are included 
for illustrating the utility of the models in food processing 
industry. It is observed that the deteriorating parameters has 
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significant effect on the optimal operating policy models. The 
model with shortages is much economical than without 
shortages. 
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have helped to the quality of paper to the present level. 
 
Changes incorporated to the revised version of the paper: 
The paper is thoroughly revised by incorporating the 
suggestions given by the referee. The item wise modifications 
made in the text as follows:  
 
A conclusion session is included, the validation of results has 
demonstrated through the data from food processing industry. 
Instead of considering the cost of placing the order which was 
assumed to be zero, a set up cost is included to consider all the 
layout costs. The English language style is improved. 
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