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Abstract 

Spatial autocorrelation measures the spatial dependency of observations that quantifies the degree of spatial clustering or 

dispersion in the values of a variable measured across a set of locations. There are two types of spatial autocorrelation 

measures such as global measures and local measures. In this article we are giving an overview of Moran’s I and Geary’s C 

(Global measures) along with the steps for manual calculation and R code for the estimation of these measures. 
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Introduction 

Observations from different locations or geographical areas are 

usually related. i.e., observations located nearby are more 

related than the observations located farther apart. This type of 

dependency of observation based on the location position is 

termed as spatial autocorrelation, which measures the 

correlation of a variable with itself through space. ‘Spatial 

autocorrelation’ is the correlation among values of a single 

variable strictly attributable to their relatively close positions 

(location) on a two-dimensional (2D) surface, introducing a 

deviation from the independent observations assumption of 

classical statistics
1
. Spatial autocorrelation coefficients indicate 

whether and to what extent the observations influence each 

other via the structure of the network. 

 

Spatial Weight Matrix (W): Spatial autocorrelation depends 

on the distance between the observations in space. So to assess 

spatial autocorrelation, we should define distance between the 

observations using any of the distance functions. This distance 

between the observations are presented in the form of matrix, 

known as weight matrix, which gives the relationships between 

locations from where the measurements were taken. The spatial 

weights matrix W is an n x n nonnegative matrix that specifies 

the “neighborhood set” for each observation. These weights are 

sometimes referred to as a neighboring function. 

 

The weight matrix can be specified in several ways
2
: i. The 

weight for any two different locations is a constant. ii. All 

observations within a specified distance have fixed weight. iii. 

K nearest neighbors has a fixed weight, and all others are zero. 

iv. Weight is proportional to inverse distance, inverse distance 

squared, or inverse distance up to a specified distance. v. 

Euclidean, Manhattan, and Minkowski distance are common 

distance functions in spatial analysis
3
 and these distance can be 

calculated by the formula 
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Where, d is the distance between i
th

 and j
th

 spatial observations, 

(p, q) is the co-ordinate position of i
th

 observation, (k, l) is the 

co-ordinate position of j
th

 observation. 

 

The generic ‘m’ parameter in the above equation can be 

replaced by the value 2 to obtain Euclidean distance; 1 to obtain 

the Manhattan distance, and all the intermediate values between 

1 and 2 to obtain array of Minkowski distances. Euclidean 

distance is most often used distance function in spatial analysis 

and inverse of the distance is taken as weight which is given as, 
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Example - Estimation of weight matrix: Consider a spatial 

arrangement of 5 districts of a city as shown below. Here the 

districts 2 and 3 are neighbors to districts 1and 4, whereas 

district 5 has only one neighbor, district 4. 

 

 
Figure–1 

Spatial arrangement of five districts of a city 
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A convenient way to summarize the spatial configuration of 5 

districts is the weight matrix, which is given below, 
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In its simplest form, these weights will take values 1 for close 

neighbors, and 0 otherwise. By convention, the diagonal 

elements of the weights matrix are set to zero
4
, ie wii = 0. 

 

Weight matrix based on the Euclidian distance to summarize 

the spatial configuration of 5 districts is given as, 
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Measures of Global spatial autocorrelation 

measures 

There are two indicators of spatial autocorrelation measure such 

as global measures and local measures. Global spatial 

autocorrelation is a measure of the overall clustering of the data 

which provides one correlation statistic to summarize the whole 

study area. But if there is no global autocorrelation or no 

clustering in the whole area, one can look for clusters at a local 

level using the measure known as local spatial autocorrelation. 

Moran’s I and Geary’s C is the measures of global spatial 

autocorrelation
5
. 

  

Moran’s I: Moran’s I tests for global spatial autocorrelation for 

continuous data. It is based on the cross-products of deviations 

of observations from their mean and is calculated by accounting 

for location of the observations
6
. Moran’s I formula is related to 

Pearson’s correlation coefficient, which is a measure of 

correlation between two variables. Moran’s I deals with the 

correlation of values of a single variable. In Pearson’s r, the 

denominator is the product of the standard deviations of the two 

variables, whereas in Moran’s I there is only one variable 

involved.  

 

Moran’s I formula is: 
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where x  is the mean of the variable x , n is the number of 

observations in the variable x, wij is the distance based weight 

given to each pair (i, j), and is given by 
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=  where (p, q) is the co-ordinate 

position of i
th

 observation and (k,l) is the co-ordinate position of 

j
th 

observation, 0S is the sum of the weights and is given by 
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We can rewrite the equation as, 
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Range of Moran’s I: Moran’s I usually takes values in the 

interval [–1, +1], although values lower than –1 or higher than 

+1 may occasionally be obtained. Positive spatial 

autocorrelation occurs when similar values occur near one 

another. Negative spatial autocorrelation occurs when 

dissimilar values occur near one another
3
 and approximately 

zero when the observations are independently arranged in 

space. 

 

The extreme values of Moran’s I depends on the maximum and 

minimum eigen values of the weight matrix. If the weight 

matrix W is symmetric, then the extreme values of the quadratic 

form X
T
WX/X

T
X for all X are simply the smallest and largest 

eigen value of W
7
. If the weight matrix W is not symmetric, the 

extreme values of the quadratic form can be found by noting 

that X
T
WX= X

T
SX, where S = (W + W

T
 )/2, so the extreme 

values of the quadratic form is the smallest and largest eigen 

values of S. Usually the minimum and maximum of Moran’s I 

ranges from -1 to 1
6,8

. 

Imin = (n/S0)* Smallest eigenv alue of W 

Imax = (n/S0)* Largest eigen value of W 

 

Example - Calculation of Moran’s I statistic: If 3, 5, 4 and 2 

are the values measured for a variable in (1, 1), (1, 2), (2, 1) and 

(2, 2) co-ordinate positions as shown below,  

3 5 

4 2 

Solution
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Table–1 

Calculation of Moran’s I 

xi xj xxi −  xx j −  wij ( xxi − )( xx j − ) wij 

3 3 -0.5 -0.5 0 0 

3 5 -0.5 1.5 1 -0.75 

3 4 -0.5 0.5 1 -0.25 

3 2 -0.5 -1.5 0.71 0.5325 

5 3 1.5 -0.5 1 -0.75 

5 5 1.5 1.5 0 0 

5 4 1.5 0.5 0.71 0.5325 

5 2 1.5 -1.5 1 -2.25 

4 3 0.5 -0.5 1 -0.25 

4 5 0.5 1.5 0.71 0.5325 

4 4 0.5 0.5 0 0 

4 2 0.5 -1.5 1 -0.75 

2 3 -1.5 -0.5 0.71 0.5325 

2 5 -1.5 1.5 1 -2.25 

2 4 -1.5 0.5 1 -0.75 

2 2 -1.5 -1.5 0 0 

Sum 10.84 -5.87 

 

Here S0= 10.84 and N=4 
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I= 4* -5.87 / 10.84 * 5 = -0.4332 

 

Table–2 

R code for the Moran’s I 

x=c(3,5,4,2)   # observations 

W=matrix(c(0,1,1,.71,1,0,.71,1,1,.71,0,1,.71,1,1,0),length 

(x)) #Weight matrix 

X=x-mean(x) 

Xt=t(X) 

I=(length(X)*Xt%*%W%*%X)/(sum(W)*Xt%*%X) 

I #Estimate of Moran’s I  

 

Moran scatter plot: The Moran scatter plot
7
 is a visual tool for 

exploratory analysis. It enables to assess how related an 

observed value is to its neighboring observations. Its horizontal 

axis is based on the values of the observations and is also 

known as the response axis. The vertical axis is based on the 

weighted average or spatial lag of the corresponding 

observations. 

 

Steps to construct the Moran scatter plot: i. Calculate 

standardized scores (Zx) based on the spatial data values (i.e., 

subtract each observation from the mean and then divide by the 

standard deviation) ii. Construct the weight matrix (W). iii. 

Calculate the spatial lag values (Wxi) (i.e., multiplying the 

weight matrix by the spatial data values). iv. Calculate the 

standardized spatial lag scores (Zy) (i.e., subtract each spatial 

lag value from the mean and then divide by the standard 

deviation). v. Construct the scatter plot by placing Zx in the 

horizontal axis and Zy in the vertical axis 

 

Example – Moran’s scatter plot: If 3, 5, 4 and 2 are the 

values measured for a variable in (1, 1), (1, 2), (2, 1) and (2, 2) 

co-ordinate positions, then the Moran’s scatter plot is given as 

below, 

3 5 

4 2 

The weight matrix is given by 
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Table–3 

Calculation of standardized scores 

Observations 

ix  

Standardized 

scores (Zx) 

σ/)( xxi −  

Spatial 

lag 

(Wxi)  

Standardized 

spatial lag 

scores (Zy) 

xii Wxx WW σ/)( −  

3 -0.3873 9 0.8696 

5 1.1618 5 -0.8696 

4 0.3873 5 -0.8696 

2 -1.1618 9 0.8696 

Here 5.3=x ; 29.1=σ  ; 7=xW ; 3.2W =
ix

σ  

 

The scatter plot obtained by plotting the Standardized scores 

(Zx) in the horizontal axis and the Standardized spatial lag score 

(Zy) in the vertical axis gives the Moran scatter plot as below. 
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Figure–2 

Moran’s scatter plot 

 

The four quadrants in the graph provide a classification of four 

types of spatial autocorrelation: high-high (upper right), low-

low (lower left), or positive spatial autocorrelation; high-low 

(lower right) and low-high (upper left), for negative spatial 

autocorrelation.  

 

Geary's C: Geary’s C is second popular indicator of global 

spatial autocorrelation. Geary’s C statistic (Geary 1954) is 

based on the deviations in responses of each observation with 

one another
6, 8 

and is given as, 
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where, n is the number of observations for the variable x,  x  is 

the mean of the variable x , wij is the distance based weight 

given to each pair (i, j), and is given by 
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position of i
th

 observation and (k,l) is the co-ordinate position of 

j
th 

observation, 0S is the sum of the weights and is given by 
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Range of Geary’s C: The value of Geary's C lies between 0 

and 2. Values lower than 1 demonstrates increasing positive 

spatial autocorrelation, values higher than 1 indicate increasing 

negative spatial autocorrelation and 1 means no spatial 

autocorrelation. Its expectation is 1 in the absence of 

autocorrelation and regardless of the specified weight matrix
8
. 

 

The extreme values of Geary’s C depend on the maximum and 

minimum eigen values of the weight matrix. 

Imin = (n-1 /2S0)* Smallest eigen value of B 

Imax = (n-1 /2S0)* Largest eigen value of B 

 where Bij=(Ri+Kj)δij-2Wij 

(δij is the kronecker delta (δij =0 if i ≠j and =1 if i=j) , Ri is row 

sum of the i
th

 row of W, Kj is the column sum of the j
th

 column 

of W) 

 

Example - Calculation of Geary’s C: If 3, 5, 4 and 2 are the 

values measured for a variable in (1, 1), (1, 2), (2, 1) and (2, 2) 

co-ordinate positions, then one can calculate the correlation 

between these observations as, 

3 5 

4 2 

 

Table–4 

Calculation of Geary’s C 

xi xj xi-xj (xi-xj)
2
 wij (xi-xj)

2
*wij 

3 3 0 0 0 0 

3 5 -2 4 1 4 

3 4 -1 1 1 1 

3 2 1 1 0.71 0.71 

5 3 2 4 1 4 

5 5 0 0 0 0 

5 4 1 1 0.71 0.71 

5 2 3 9 1 9 

4 3 1 1 1 1 

4 5 -1 1 0.71 0.71 

4 4 0 0 0 0 

4 2 2 4 1 4 

Sum 10.84 38.84 

 

Here S0= 10.84 and N=4 

 

5)5.32()5.34()5.35()5.33()( 2222
4

1

2
=−+−+−+−=−∑

=i

i xx  

1.0749 
5*84.10*2

84.38*3
==C  

 

Table–5 

R code for the Geary’s C statistic 

x=c(3,5,4,2)  # Observations 

W=matrix(c(0,1,1,.71,1,0,.71,1,1,.71,0,1,.71,1,1,0),4)   # 

Weight matrix 

y=matrix((rep(x,4)),length(x)) 

X=x-mean(x) 

C=(length(x)-1)*sum(W*((y-t(y))^2))/ 

(2*sum(W)*t(X)%*%X) 

C  # Estimate of Geary’s Statistic 

 

Conclusion  

Statistics relies on observations being independent from one 

another. If observations are clustered or dependent on each 

other, the assumption of independence is violated and in such 
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situations the spatial autocorrelation measures are appropriate. 

Morans I and Geary’s C are the two important measures of 

global spatial autocorrelation. Moran’s I is sensitive to extreme 

values, whereas Geary’s C is more sensitive to differences in 

small neighborhoods. Even though Moran’s I and Geary’s C 

result in similar conclusions, Moran’s I is preferred in most 

cases since it is consistently more powerful than Geary’s C
5
. 
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