Analyticity and Inversion Theorem for A New Version of Banach Space Valued Potential Transform

Sahu N.D. ${ }^{1}$ and Gudadhe A.S. ${ }^{2}$
${ }^{1}$ Sipna College of Engineering and Technology, Amravati, INDIA
${ }^{2}$ Govt. Vidarbha Institute of Science and Humanities, Amravati, INDIA
Available online at: www.isca.in, www.isca.me
Received $29^{\text {th }}$ March 2015, revised $14^{\text {th }}$ April 2015, accepted $10^{\text {th }}$ May 2015

Abstract

In this paper we have defined new versions of generalized Potential transform on Banach space. Then for new version of Banach space valued Potential transform, the analyticity and inversion theorem has been derived.

Keywords: Testing function spaces, Generalized function, Banach space, Potential transforms.

Introduction

The Theory of integral transforms has vast applications in solving differential equations, in various physical situations. As explained by Zemanian A.H. ${ }^{1}$, many times the functions in some situations take values from Banach space instead of Euclidean space. Hence some conventional integrals transforms are studied in the Banach space domain e.g. Tekale ${ }^{2}$ discussed Banach spaced valued Stieltjes transform. Gudadhe ${ }^{3}$ studied Banach spaced valued Mellin transform. Koh, Li^{4} discussed on Banach spaced valued Hankel transform. Recently in 2012 Holmes ${ }^{5}$ had extended Gaussians Radon transform on Banach space.

We have already extended Potential transform ${ }^{6}$ to the Banach space valued generalized function and proved its inversion theorem.

The objective of this paper is to study a new version of generalized Potential transform in Banach space. Hence in section 2, we have defined Banach space valued new version of Potential transform by stating suitable testing function space. Section 3 is devoted to discuss analyticity of new integral transform and 4th section proves inversion theorem of Banach space valued new version of Potential transform.

Definition

We first define testing function space $\mathrm{P}_{2 \mathrm{n}, \mathrm{c}, \mathrm{d}, \alpha}$, new version of Potential transform.
$\mathrm{P}_{2 \mathrm{n}, \mathrm{c}, \mathrm{d}, \mathrm{c}}(\mathrm{A})$ denotes the space of all complex valued smooth functions $\psi(t)$ on which functional $i_{c, d, k}$ defined by $P_{2 n, c, d, \alpha}(A)=\left\{\psi: \psi \in E_{+}(A) ; i_{c, d, k}(\psi)=\right.$
$\left.\underset{0 \lll \infty}{\operatorname{Sup}}\left\|\lambda_{c, d}(t)\left(t D_{t}\right)^{k}\{t \psi(t)\}\right\|_{A} \leq C_{k} L^{k} k^{k \alpha}, k=0,1,2,3, \ldots,\right\}$

The constant C_{k} and L depend on function and
$\lambda_{c, d}(\mathrm{t})= \begin{cases}\mathrm{t}^{-\mathrm{c}}, & 0<\mathrm{t}<1 \\ \mathrm{t}^{-\mathrm{d}}, & 1 \leq \mathrm{t}<\infty\end{cases}$
where c and d are real numbers.
It can be easily proved that $\frac{t^{2 n-1}}{t^{2 n}+x^{2 n}} \in P_{2 n, c, d, \alpha}(A)$. Hence we define a new version of Banach space valued Potential transform as

Then the Potential transform of a regular function, $f(t)$ is defined as,

Let $\mathrm{f} \in\left[\mathrm{D}_{+} ; \mathrm{A}\right]$ is Banach space valued Potential transformable function, if there exists two members $\sigma_{1}, \sigma_{2} \in[-\infty, \infty]$, such that $\sigma_{1}<\sigma_{2}, \quad \mathrm{f} \in\left[\mathrm{P}_{2 \mathrm{n}}\left(\sigma_{1}, \sigma_{2}\right) ; \mathrm{A}\right] \quad$ and in addition $\mathrm{f} \notin\left[\mathrm{P}_{2 \mathrm{n}}(\mathrm{w}, \mathrm{z}) ; \mathrm{A}\right]$ if either $\mathrm{w}<\sigma_{1}$ or $\mathrm{z}>\sigma_{2}$, where $\left[\mathrm{P}_{2 \mathrm{n}}(\mathrm{w}, \mathrm{z}) ; \mathrm{A}\right]$ is as defined in 3.1.3, and
$\Omega_{\mathrm{f}}=\left\{\mathrm{x}: \sigma_{1}<\operatorname{Re}(\mathrm{x})<\sigma_{2}\right\}, \frac{\mathrm{t}^{2 \mathrm{n}-1}}{\mathrm{x}^{2 \mathrm{n}}+\mathrm{t}^{2 \mathrm{n}}} \in \mathrm{P}_{2 \mathrm{n}}\left(\sigma_{1}, \sigma_{2}\right)$.
Potential transform of a regular function $f(t)$, is defined as,
$P_{2 n}\{f(t) ; x\}=P_{2 n}(x)=\left\langle f(t), \frac{t^{2 n-1}}{t^{2 n}+x^{2 n}}\right\rangle$,
Now we shall show that Banach space valued $P_{2 n}(x)$ is analytic.

Analyticity Theorem for a New Version of Banach Space
Valued Potential Transform

Theorem: If $\mathrm{P}_{2 \mathrm{n}}\{\mathrm{f}(\mathrm{t}) ; \mathrm{x}\}=\mathrm{P}_{2 \mathrm{n}}(\mathrm{x})$ as defined in (2) for $\mathrm{x} \in \Omega_{\mathrm{f}}$, here $\Omega_{f}=\left\{x: \sigma_{1}<\operatorname{Re}(x)<\sigma_{2}\right\} \quad$ also $P_{2 n} \in[D(A), B]$ then $P_{2 n}(x)$ is a $[A, B]$ valued analytic function, here $x \in \Omega_{f}$. For nonnegative integer q, where $P_{2 n}{ }^{(q)}(x)=\left\langle f(t), K^{q}(x, t)\right\rangle$, $K(x, t)=\frac{t^{2 n-1}}{t^{2 n}+x^{2 n}}$, for $x \in \Omega_{f}$.

Proof: By induction method, we prove the theorem on q. Let x be an arbitrary but fixed point in Ω_{f}. Here $P_{2 x}(x)=\langle f(t), K(x, t)\rangle$, has meaning, because $\mathrm{f} \in\left[\mathrm{P}\left(\sigma_{1}, \sigma_{2}\right) ; \mathrm{A}\right]$ and $\frac{\mathrm{t}^{2 \mathrm{n}-1}}{\mathrm{t}^{2 \mathrm{n}}+\mathrm{x}^{2 \mathrm{n}}}=\mathrm{K}(\mathrm{x}, \mathrm{t}) \in \mathrm{P}\left(\sigma_{1}, \sigma_{2}\right)$.

The real positive numbers, we choose a, b, r and r_{1} such that $\sigma_{1}<c<\operatorname{Re}(\mathrm{x}-\mathrm{r})<\operatorname{Re}\left(\mathrm{x}-\mathrm{r}_{1}\right)<\mathrm{d}<\sigma_{2}$ also Δx be the complex increment such that $|\Delta x|<r$.

$$
\frac{P_{2 n}(x+\Delta x)-P_{2 n}(x)}{\Delta x}-\left\langle f(t), \frac{\partial}{\partial x} \frac{t^{2 n-1}}{t^{2 n}+x^{2 n}}\right\rangle=\left\langle f(t), \psi_{2 n, \Delta x}(t)\right\rangle,
$$

Therefore,
$\frac{1}{\Delta x}\left\{\left\{f(t), \frac{t^{2 n-1}}{(x+\Delta x)^{2 n}+t^{2 n}}\right)-\left\langle f(t), \frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}\right\}\right\}-\left\langle f(t), \frac{\partial}{\partial x} \frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}\right)=\left\langle f(t), \psi_{2 n, \Delta x}(t)\right\rangle$
$\Rightarrow\left\langle f(t),\left\{\frac{1}{\Delta x}\left(\frac{t^{2 n-1}}{(x+\Delta x)^{2 n}+t^{2 n}}-\frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}\right)-\frac{\partial}{\partial x} \frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}\right\}\right\rangle=\left\langle f(t), \psi_{2 n, \Delta x}(t)\right\rangle$
where
$\psi_{2 n, \Delta x}(t)=\frac{1}{\Delta x}\left(\frac{t^{2 n-1}}{(x+\Delta x)^{2 n}+t^{2 n}}-\frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}\right)-\frac{\partial}{\partial x} \frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}$,
which can be write down as follows,
$\psi_{2 n, \Delta x}(t)=\frac{1}{\Delta x}[K(x+\Delta x, t)-K(x, t)]-\frac{\partial}{\partial x} K(x, t)$,
$D^{q}\left\{\psi_{2 n, \Delta x}(t)\right\}=\frac{1}{\Delta x}\left[K^{q}(x+\Delta x, t)-K^{q}(x, t)\right]-\frac{\partial}{\partial x} K^{q}(x, t)$,
where, $K^{q}(x, t)=\frac{\partial^{q}}{\partial x^{q}} K(x, t)$.

To proceed, let C be the circle with centre x and radius r_{1}.
Let us restrict r_{1} such that C lies entirely with Ω_{f} and $0<r<\mathrm{r}_{1}$.

Using Cauchy's integral formula we get,
$D_{\mathrm{t}}^{\mathrm{q}}\left\{\psi_{2 \mathrm{n}, \Delta \mathrm{x}}(\mathrm{t})\right\}=\frac{\mathrm{D}_{\mathrm{t}}^{\mathrm{q}}}{2 \pi \mathrm{i} \Delta \mathrm{x}} \int_{\mathrm{c}}\left[\frac{1}{[\xi-(\mathrm{x}+\Delta \mathrm{x})]}-\frac{1}{[\xi-\mathrm{x}]}\right] \mathrm{K}(\xi, \mathrm{t}) \cdot \mathrm{d} \xi-\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{c}} \frac{\mathrm{K}(\xi, \mathrm{t})}{(\xi-\mathrm{x})^{2}} \mathrm{~d} \xi$, $\xi \in \mathrm{C}$
therefore,
$D_{\mathrm{t}}^{\mathrm{q}}\left\{\psi_{2 \mathrm{n}, \Delta \mathrm{x}}(\mathrm{t})\right\}=\frac{\Delta \mathrm{x}}{2 \pi \mathrm{i}} \int_{\mathrm{c}} \frac{\mathrm{D}_{\mathrm{t}}^{\mathrm{q}} \mathrm{K}(\xi, \mathrm{t})}{[\xi-(\mathrm{x}+\Delta \mathrm{x})](\xi-\mathrm{x})^{2}} \mathrm{~d} \xi$.

Now for fixed $\xi \in \mathrm{C}, 0<\mathrm{t}<\infty \mathrm{D}_{\mathrm{t}}^{\mathrm{q}} \mathrm{K}(\xi, \mathrm{t})$ is a continuous function on a compact subset of Ω_{f}, hence it is bounded.
Therefore $\left|D_{t}^{q} K(\xi, t)\right| \leq N$
Moreover, $|\xi-\mathrm{x}-\Delta \mathrm{x}|>\mathrm{r}_{1}-\mathrm{r}>0$ and $|\xi-\mathrm{x}|=\mathrm{r}_{1}$
Therefore $\left\|\lambda_{\mathrm{c}, \mathrm{d}}(\mathrm{t}) D_{\mathrm{t}}^{\mathrm{q}} K(\xi, \mathrm{t})\right\|_{\mathrm{A}} \leq \frac{|\Delta \mathrm{x}|}{2 \pi \mathrm{i}} \int_{\mathrm{C}} \frac{\mathrm{N}}{\left(\mathrm{r}-\mathrm{r}_{1}\right) \mathrm{r}_{1}^{2}} \mathrm{~d} \xi$
Therefore $\left\|\lambda_{c, \mathrm{~d}}(\mathrm{t}) D_{\mathrm{t}}^{\mathrm{q}} K(\xi, \mathrm{t})\right\|_{\mathrm{A}} \leq \frac{|\Delta \mathrm{x}| \mathrm{N}}{\left(\mathrm{r}-\mathrm{r}_{1}\right) \mathrm{r}_{1}^{2}} \quad$ for \quad some constant N.

Now $\frac{|\Delta x| N}{\left(r-r_{1}\right) r_{1}^{2}} \rightarrow 0 \quad$ as $\quad|\Delta x| \rightarrow 0$
This shows that $\psi_{2 n, \Delta x}(t)$ converges to zero in $P_{2 n, c, d}(A)$ and hence the proof is complete.

Inversion Theorem for $P_{2 n}(x)$

For the inversion theorem for new version of Banach space valued Potential transform we have to use another version of Laplace transform on Banach space. Hence first we defined Banach space valued second version of Laplace transform
4.1 Banach Space Valued Second Version Laplace Transform: Given any $a, b \in R$, set
Let $\lambda_{a, b}= \begin{cases}e^{a t^{2}} & 0 \leq t<\infty \\ e^{b t^{2}} & -\infty<t<0\end{cases}$
$L_{2, a, b}(A)$ is the linear spaces of all A valued smooth functions on $\quad R \quad$ Such that $\mathrm{L}_{2, \mathrm{a}, \mathrm{b}}(\mathrm{A})=\left\{\psi: \psi \in \mathrm{E}_{+}(\mathrm{A}) ; \mathrm{i}_{\mathrm{c}, \mathrm{d}, \mathrm{k}}(\psi)=\operatorname{Sup}_{0 \lll \infty}\left\|\lambda_{\mathrm{a}, \mathrm{b}}(\mathrm{t}) \psi^{\mathrm{k}}(\mathrm{t})\right\|_{\mathrm{A}}<\infty\right\}$
$\mathrm{L}_{2, \mathrm{a}, \mathrm{b}}(\mathrm{A})$ is complete and therefore Frechet space under topology generated by the multinorms $\left\{\gamma_{\mathrm{a}, \mathrm{b}, \mathrm{k}}\right\}_{\mathrm{k}=0}^{\infty}$.
f is said to be Banach space valued second version Laplace transformable, if there exists two elements σ_{1} and σ_{2} in the extended real line $[-\infty, \infty]$ such that $\sigma_{1}<\sigma_{2}$, $\mathrm{f} \in\left[\mathrm{L}_{2}\left(\sigma_{1}, \sigma_{2}\right) ; \mathrm{A}\right]$ and in addition $\mathrm{f} \notin\left[\mathrm{L}_{2}(\mathrm{w}, \mathrm{z}) ; \mathrm{A}\right]$ if either $\quad \mathrm{w}<\sigma_{1} \quad$ or $\quad \mathrm{z}>\sigma_{2}$ with the open strip $\Omega_{\mathrm{f}}=\left\{\mathrm{x}: \sigma_{1}<\operatorname{Rex}<\sigma_{2}\right\}$, will be called the strip definition for the L_{2} transform of f. By the aforementioned identification, $\mathrm{f} \in\left[\mathrm{L}_{2}\left(\sigma_{1}, \sigma_{2}\right) ;[\mathrm{A} ; \mathrm{B}]\right\rfloor$ also. Thus, we may define the L_{2} transform of f as a mapping of Ω_{f} into $[\mathrm{A} ; \mathrm{B}]$ by $\mathrm{te}^{-\mathrm{t}^{2} \mathrm{x}^{2}} \in \mathrm{~L}_{2}\left[\left(\sigma_{1}, \sigma_{2}\right) ; \mathrm{A}\right]$, then the second version Laplace transform is defined as,
$\mathrm{F}(\mathrm{x})=\mathrm{L}_{2}\{\mathrm{f}(\mathrm{t}) ; \mathrm{x}\}=\left\langle\mathrm{f}(\mathrm{t}) ; \mathrm{te}^{-\mathrm{t}^{2} \mathrm{x}^{2}}\right\rangle$.
$L_{2}(x)$ is a A valued function and also $L_{2}(x)$ is analytic.
So the second version of Laplace transform i.e. L_{2} transform is given by, $L_{2}\{f(t) ; x\}=F(x)=\int_{0}^{\infty} t f(t) \exp \left(-t^{2} x^{2}\right) d t$

Also if $\mathrm{te}^{-\mathrm{t}^{2} \mathrm{x}^{2}} \in \mathrm{~L}_{2}(\mathrm{w}, \mathrm{z}, \mathrm{A})$, so that the second version of Laplace transform i.e. L_{2} transform of $[A, B]$ valued distribution is defined as $L_{2}^{A B}(x)=\left\langle f(t) ; \mathrm{te}^{-t^{2} x^{2}}\right\rangle$ and here LHS is $[A, B]$ valued distribution. Similarly if $\mathrm{t}^{-\mathrm{t}^{2} x^{2}} \in L_{2}\left(\sigma_{1}, \sigma_{2}\right)$ and $\mathrm{f} \in\left[\mathrm{L}_{2}\left(\sigma_{1}, \sigma_{2}\right) ; \mathrm{A}\right]$ then we can define A - valued L_{2} transform denoted by $L_{2}^{\mathrm{A}}(\mathrm{x})$.
4.2 Relations between Generalized and Classical Transforms of Laplace and Potential: There is no need of extending these transforms to Banach space, as Laplace transform is already extended to Banach space valued generalized function in ${ }^{8}$.

Generalized $\mathrm{L}_{2 \mathrm{n}}$ transform can be expressed as,
$\mathrm{L}_{2 \mathrm{n}}\{\mathrm{f}(\mathrm{t}) ; \mathrm{x}\}=\left\langle\mathrm{f}(\mathrm{t}) ; \mathrm{t}^{2 \mathrm{n}-1} \exp \left(-\mathrm{t}^{2 \mathrm{n}} \mathrm{x}^{2 \mathrm{n}}\right)\right\rangle$
$\mathrm{L}_{2 \mathrm{n}}$ transform is related to the classical Laplace transform and the second version of the generalized Laplace transform i.e. L_{2} transform by the following relationship,
$\mathrm{L}_{2 \mathrm{n}}\{\mathrm{f}(\mathrm{t}) ; \mathrm{x}\}=\frac{1}{2 \mathrm{n}} \mathrm{L}\left\{\mathrm{f}\left(\mathrm{t}^{\frac{1}{2 n}}\right) ; \mathrm{x}^{2 \mathrm{n}}\right\}$
$L_{2 n}\{f(t) ; x\}=\frac{1}{n} L_{2}\left\{f\left(t^{\frac{1}{n}}\right) ; x^{n}\right\}$.
4.3 Lemma: The identity $P_{2 n}^{A, B}\{f(t) ; x\}=2 n L_{2 n}^{A, B}\left\{L_{2 n}^{A}\{f(t) ; y\} ; x\right\}$ hold true, provided that the integrals involved converges absolutely, in the respective Banach spaces.

Proof: Consider $L_{2 n}^{A, B}\left\{L_{2 n}^{A}\{f(t) ; y\} ; x\right\}$
By definition of $L_{2 n}$ transform, we have, $L_{2 n}^{A, B}\left\{L_{2 n}^{A}\{f(t) ; y\} ; x\right\}=\left\langle L_{2 n}^{A}[f(t) ; y] ; y^{2 n-1} e^{-x^{2 n} y^{2 n}}\right\rangle B y$
changing the order of the integration, we have,
$L_{2 n}^{A, B}\left\{L_{2 n}^{A}\{f(t) ; y\} ; x\right\}=\left\langle f(t) t^{2 n-1} ;\left\langle y^{2 n-1} \exp \left(-x^{2 n} y^{2 n}\right) \exp \left(-t^{2 n} y^{2 n}\right\rangle\right\rangle\right\rangle$
$=\left\langle f(\mathrm{t}) \mathrm{t}^{2 \mathrm{n}-1} ;\left\langle\mathrm{y}^{2 \mathrm{n}-1} ; \exp \left\{-\mathrm{y}^{2 \mathrm{n}}\left(\mathrm{x}^{2 \mathrm{n}}+\mathrm{t}^{2 \mathrm{n}}\right)\right\}\right\rangle\right\rangle$
Set $y^{2 n}=m \Rightarrow y=m^{\frac{1}{2 n}}$
$L_{2 n}^{A, B}\left\{L_{2 n}^{A}\{f(t) ; y\} ; x\right\}=\frac{1}{2}\left\langle f(t) ; \frac{t^{2 n-1}}{\left(t^{2 n}+x^{2 n}\right)}\right\rangle$
$\Rightarrow \mathrm{P}_{2 \mathrm{n}}^{\mathrm{A}, \mathrm{B}}\{\mathrm{f}(\mathrm{t}) ; \mathrm{x}\}=2 \mathrm{n} \mathrm{L}_{2 \mathrm{n}}^{\mathrm{A}, \mathrm{B}}\left\{\mathrm{L}_{2 \mathrm{n}}^{\mathrm{A}}\{\mathrm{f}(\mathrm{t}) ; \mathrm{y}\} ; \mathrm{x}\right\}$
4.4. Inversion Theorem: Let $\mathrm{f} \in[\mathrm{D}(\mathrm{A}) ; \mathrm{B}]$ and $P_{2 n}\{f(t) ; x\}=P_{2 n}(x),=\left\langle f(t) ; \frac{t^{2 n-1}}{x^{2 n}+t^{2 n}}\right\rangle \quad$ for $\quad x \in \Omega_{f}$, $\Omega_{\mathrm{f}}=\left\{\mathrm{x}: \sigma_{1}<\operatorname{Re}(\mathrm{x})<\sigma_{2}\right\}, \quad \frac{\mathrm{t}^{2 \mathrm{n}-1}}{\mathrm{x}^{2 \mathrm{n}}+\mathrm{t}^{2 \mathrm{n}}} \in \mathrm{P}\left(\sigma_{1}, \sigma_{2}\right), \quad$ then convergence in $[\mathrm{D}(\mathrm{A}) ; \mathrm{B}]$,
$\mathrm{f}(\mathrm{t})=\frac{1}{2 \mathrm{n} \pi \mathrm{i}}\left\langle\frac{1}{\pi \mathrm{i}}\left\langle\mathrm{P}_{2 \mathrm{n}}\left(\mathrm{x}^{\frac{1}{2 n}}\right) ; \mathrm{e}^{\mathrm{xy} \mathrm{y}^{2 n}}\right\rangle ; \mathrm{e}^{\mathrm{y}^{t^{2 n}}}\right\rangle$.
Proof: Here we want to show that $\mathrm{f}(\mathrm{t})=\frac{1}{2 \mathrm{n} \pi \mathrm{i}}\left\langle\frac{1}{\pi \mathrm{i}}\left\langle\mathrm{P}_{2 \mathrm{n}}\left(\mathrm{x}^{\frac{1}{2 n}}\right) ; \mathrm{e}^{\mathrm{xy}} \mathrm{y}^{2 n}\right\rangle ; \mathrm{e}^{\mathrm{t}^{2 n}}\right\rangle$.
By lemma 4.3, omitting the superscripts, we get

$$
\begin{aligned}
& P_{2 n}\{f(t) ; x\}=2 n L_{2 n}\left\{L_{2 n}\{f(t) ; y\} ; x\right\} \\
& \text { that is } \frac{1}{2 \mathrm{n}} \mathrm{P}_{2 \mathrm{n}}(\mathrm{x})=\mathrm{L}_{2 \mathrm{n}}\left\{\mathrm{~L}_{2 \mathrm{n}}\{\mathrm{f}(\mathrm{t}) ; \mathrm{y}\} ; \mathrm{x}\right\}
\end{aligned}
$$

The required result is the natural consequence of above lemma 4.3 and lemmas 7.2.1, and 7.2.2 in [4] i.e. in our research paper
" Banach Space Valued Potential Transform".

Conclusion

The generalized integral transform proved to be an important tool in system analysis. We observed the importance and a
special requirement of Banach space valued generalized function theory. So that we have studied Analyticity theorem and Inversion theorem of Banach space valued Potential transform having applications in number of fields, whenever the functions involved in that are Dirac delta type singular functions.

References

1. Zemanian A.H., Realizability Theory for Continuous Linear system, Acad Press, New York (1972)
2. Tekale B.K., Choudhary M.S., On Stieltjes transform of Banach Spaced Valued Distribution, Journal of Mathematical Analysis and Analysis and Application, 139 (1989)
3. Gudadhe A.S., On the Generalized Mellin Transform Of Distribution, Journal of M.A.C.T., I(25), 55-62 (1992)
4. Koh E.L., Li C.K., The Hankel transformation of Banach space valued generalized functions, Proc. of Amer. Math. Soc., 119(1), 153-163 (1993)
5. Holmes Irina, Sengupta A., A Gaussian Radon transform for Banach spaces, Journal of Functional Analysis, 16(7), 565-581 (2012)
6. Sahu N.D. and Gudadhe A.S., Banach Space Valued Potential Transform, Journal of Science and Arts vol. 2(15), 121-128 (2011)
