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Abstract

Generalized Gaussian distribution is useful in analyzing several data sets arising at places at image processing, speech
recognition, signal processing, statistical quality control, agricultural experimentation, industrial experimentation and
biological experiments. In this paper, a right truncated generalized Gaussian distribution is introduced. The various
distribution properties such as the distribution function, moments, skewness, kurtosis, hazard function and survival function
are derived. The distribution of the " order statistics and the median distribution are also derived. Some inferential aspects

of the distribution are also studied.
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Introduction

Generalized Gaussian distribution has been proposed for
modeling atmospheric noise, subband encoding of audio-video
signals, impulse noise, blind signals separation etc. Varanasi
MK et al', Choi, S. Cichocki et al’, Wu et al’, Armando et al*.
Edgeworth’ has considered the possibility of polynomial
transformations to normality. Kameda T® has pioneered the
idea of probability plot to indicate the form of transformation.
Johnson N.L” has introduced a system of frequency curves
generated by method of translation analogy to pearsonian
system of distributions using log-normal and or unit normal
distribution. By choosing an initial distribution Gram-Charlier
series distributions are generated by Edgeworth using the
normal distribution. Plucinska® used generalized gamma
distributions one for negative and one for positive values of
arguments to construct a new class of distribution functions.
She also developed in 1965 the distributions by reflecting the
generalized gamma distribution about the origin. Borgi.O’ has
also considered similar reflection of the standard gamma
distribution. The main difficulty in these distributions is that the
density is zero in general at the point of symmetry. Srinivasa
Rao et al'” have generated a class of symmetric distributions
using Laplace distribution. Anithakumari et al'' developed and
analyzed a left truncated generalized Gaussian distribution.
There it is assumed that the variate on the study follows a
generalized Gaussian distribution and constrained with a finite
value on the left end. This distribution work well in some cases
where there is a minimum threshold for the variate under study.
However, in some other datasets arising at quality control,
Agricultural experiments, reliability study, the variable under
study is having constrained on the right end. i.e., there is an
upper bound for the variable. For example, in man power
modeling there is an upper bound for the complete length of
service known as age of superannuation. For these sort of

International Science Congress Association

situations it is needed to consider right truncated generalized
Gaussian distribution.

In this paper, we develop and analyze a right truncated
generalized Gaussian distribution. The various distributional
properties such as the probability density function, the
distribution function, the four moments, the skewness, the
kurtosis, the hazard function and survival function are derived.
The order statistics of the distribution are also studied. Some
inferential properties related to the parameters of the
distribution are discussed. A numerical illustration is also
presented.

Right Truncated Generalized Gaussian distribution

A Continuous random variable X is said to be a three parameter
generalized Gaussian distribution if its probability density
function (p.d.f) is of the form

f(x;ﬂ,a,ﬁ)=Ll
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Consider that the range variable is finite say (—oo, B ). Then

the probability density function (p.d.f) of a right truncated three
parameter generalized Gaussian distribution is
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The lower and upper truncation points are—oco and B

respectively. Hence, the probability density function of three
parameter right truncated generalized Gaussian distribution is
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where, E, 7 is an incomplete gamma function.

Distributional Properties

The various distributional properties of the right truncated
generalized Gaussian distribution are discussed in this section

u=30, a=12, =2, B=50

u=100, a=60, f=4, B=120

Figure-1
The frequency curves for different values of the right truncated generalized Gaussian distribution.
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From figurel it is observed that this distribution is uni-model
distribution.
The distribution function of X is given by

(A2
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n—\({-7n-—-.
B Bl
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—, is an incomplete gamma function.
where, B a

The mean of the distribution is
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The median M of the distribution can be obtained by solving
the equation (8) and (9)
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The mode of the distribution can be obtained by solving the
following equation (10) for x

Blx—p | x—p

a| o a

g XxX)= =

ry=—r L
a

This model is uni-model distribution

(10)

The raw moments of the distribution are
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Similarly for B > /£, the ™ non central moment is
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(vii) The skewness of the distribution is
(257 -38,5,+5,f

fm—v(z gl
()
5 7( -

B = ) for B<pu
(Sz _Sl )3
3
PRCTARE TR B
(Pz - P12)3
Kurtosis of the distribution is
2 _ 2 _
P (2s,-s; )+s24 5 e e
(Sz_Slz)
3P*(2P, —P*)+P,—4PP,
ﬂzz l( 2 l) 24 173 fO”'BZﬂ
(p,-p?)
where

ISSN 2320-6047

1 [t
L) )
@J {z

B ,uj
/3 a
The hazard rate function of the distribution is & (x) =
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The survival rate function S (x) is § (x)zl— F (x)
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Order Statistics of Right Truncated Three
Parameter Generalized Gaussian distribution

The simple explicit form of the distribution function as given in
equation (4) and (5) leads us to derive the order statistics
connected with this right truncated three parameter generalized
Gaussian distribution.

g 4
f(x): “ [ ﬁ] B<u
5, peaf
f(x)= o’ B> (19)
()

Let X, <X, <..<X, denote the order statistics obtained

from a random sample of size n from the generalized truncated
Gaussian distribution having the probability density function of
the form given in (19). The probability density function of s™
order statistics'” is given by,
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Substituting f(x) and F(x) values given in this equation (19) and
(5) in the equation (20), we get the probability density function

of the s™ order statistics is given by
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Substituting f(x) and F(x) values given in this equation (19) and
(4) in the equation (20), we get the probability density function
of the s™ order statistics is given by

Case (ii): For B <
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The probability density function of the first order statistics is

(~1)?
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obtained by substituting § =1 in the equation (21)
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Hence, case (i): For B >,
For—oo < x<0
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The probability density function of the first order statistics is

(1)

obtained by substituting § =1 in the equation (22)

Hence, case (ii): For B <,
For —o < x <0
- n—1

(23)
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The probability density function of the n" order statistics is
obtained by substituting s = n in equation (21)

Case (i): For B>

For —co < x <0

fn:n(x): &
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The probability density function of the n™ order statistics is
obtained by substituting § = 7 in equation (22)

Case (ii): for B<p

For —co < x <0
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Distribution of the Median: Let n be odd. The distribution of
n+1

the median is obtained by substituting § =

(21) and equation (22).
For —o < x <0

in equation

For

(26)
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Inferential Aspects of the Right Truncated Three
Parameter Generalized Gaussian distribution
Method of Moments: In this method, the theoretical moments

of the population and the sample moments are equated
correspondingly to deduce the estimators of the parameters. Let

X,5X,,...X, be a sample of size n drawn from a population

having the probability density function of the form given in
equation (2 and 3), we have
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This distribution is having three parameters p, a and . Hence
we equate the first three moments of the population and the
sample, which leads to the following equations.
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For given values of A, solving the above equations (28), (29)
and (30) simultaneously by using Newtons-Raphson method,
we can obtain the estimators for the parameters p, o and f.

Sample mean X is an unbiased estimator for the parameter p.

Variance of X is
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Maximum Likelihood Method of Estimation
Case (i): For B> 1

Let X, X,,...X, be a sample of size n drawn from a population

having the probability density function of the form is given in
equation (3), then the likelihood function of the sample is

il
n o
7l e
L= (ﬁj I1 B (32)
o a
) 1 o 1
| |
(J)e lxiﬂ dx; + (J) e lxiﬁ dx;
Taking logarithms on both sides of (32), we get
Logl=nlogf3—nloga
B (B:g]ﬂ
- oo 1 a 1
n|x. n —X X 33
- ~ —log)| [e 'x;/ ld)%—i- [ e 'xp 1d ©3)
= o =0 0

Since, Log L is not differentiable with respect to {3 for all values
in the range ﬂ >( , we obtain the estimate of B using the
moment method of estimation using the equation (30).

For obtaining the maximum likelihood estimate of p, we
differentiate Log L with respect to p and equate it to zero. But
in equation (33) the function Log L is differentiable with
respect to p only when [ is even. But in the case when [ is odd
we obtain the maximum likelihood estimator as in case of
Laplace distribution (Keynes (1911)) i.e., when B is odd, we
find p which maximizes log L. From equation (33) Log L is
Xi—H g
a
B

n
maximum if E
i=1

is minimum when B is odd. The

n

. X
function z

i=1

is minimum only when p is the median.

a
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Therefore the MLE of p is the median of the distribution when
B is odd. In case of B being even, we differentiate Log L with
respect to u and equate it to zero.

B B

XM _[M]
a
pel el (B ¢ =0 (4
ai=1 xl-—,uj o (1j 1 (B_'ujﬁ
= |+y | ——
¢ B B\ a

To derive maximum likelihood estimator of a, consider the
derivative of Log L w. r. to o and equate it to zero. This implies

sl
ﬂ+£(3_”\ e{ . ] Zo0 39
a

0‘) 1 1 (B-u «
G2

Solving the equations (30), (34) and (35) simultaneously for p,
a and B. Using numerical methods like Newton Raphson’s
method, we can obtain the maximum likelihood estimators of
the parameters p, o and p.

£

PEx—H
ai=1

o

Case (ii): For B< u

Let X, X,,...X, be a sample of size n drawn from a population

having the probability density function of the form is given in
equation (3), then the likely hood function of the sample is

il
a
e
L= (ﬁj I1 B (36)
o e
o0 1 a 1
=X -1 =X -1
(J)e "B od - | e 'x; B dy
Taking logarithms on both sides of (36), we get
LogL=nlog—nloga—
i
- ooy, 1_ o]y 1 (37
g i —logg fe xlxi,ﬁ 1dxi— [ e xlxi,ﬁ ldxi
=l « =l 0 0

Since, Log L is not differentiable with respect to 3 for all values
in the range ,5 >( , we obtain the estimate of B using the
moment method of estimation using the equation (30).

For obtaining the maximum likelihood estimate of p, we
differentiate Log L with respect to pu and equate it to zero. But
in equation (37) the function Log L is differentiable with
respect to g only when B is even. But in the case when f is odd
we obtain the maximum likelihood estimator as in case of
Laplace distribution i.e., when B is odd, we find u which
maximizes Log L. From equation. (37) log L is maximum if
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n|x — B

Z ! is minimum when [ is odd. The function
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n|x — B
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Therefore the MLE of p is the median of the distribution when
B is odd. In case of B being even, we differentiate Log L with
respect to U and equate it to zero.

o

xi—,u B—,u _[%ﬂ}ﬁ
ﬁg o +£ o e 20(38)
ai=l{ x;— a(B—,uj | | B—u’b)
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To derive maximum likelihood estimator of a, consider the
derivative of Log L w. r. to o and equate it to zero.

B-ulP
. &
puli-u" plB-u| e n_, 69
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Solving the equations (30), (38) and (39) simultaneously for p,
a and PB. Using numerical methods like Newton Raphson’s
method, we can obtain the maximum likelihood estimators of
the parameters p, o and p.

Conclusion

In this paper, we have introduced right truncated generalized
Gaussian distribution. Generalized Gaussian distribution is
useful in analyzing several data sets arising at places at image
processing, speech recognition, signal processing, statistical
quality control, agricultural experimentation, industrial
experimentation and biological experiments. The various
distributional properties such as distribution function, moments,
skewness, kurtosis, hazard function and survival function are
derived. It is observed that the hazard function is sometimes
increases and decreases depending upon the truncation
parameter. The order statistics of the variate under study are
also derived. This distribution is useful for analyzing several
data sets in management science, finance, quality control and
agricultural experiments. Some inferential aspects of the
distribution, method of moments, and maximum likelihood
estimation are also derived.
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