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Abstract

This paper considers an application of probability to an insurance portfolio where the claim inter-arrival time depends on
the previous claim size and follows Erlang (2) distribution. An explicit solution is derived for the crucial parameter of
insurance companies, the probability of survival, using Laplace transform. The results are illustrated with examples.
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Introduction

The classical and renewal risk models are widely investigated
in recent times. But, most of them assume that the inter-arrival
time between two successive claims and the claim amounts are
independent. However, when modelling natural events, this
assumption is very restrictive. To avoid this restriction
Albrecher and Boxmaconsidered a model in which the
distribution of inter-arrival time depends on previous claim size
and was extended to a semi-Markovian risk model”. In the
study by Boudreault, Cossette, Landriault, and Marceau the
claim size depends on the inter-claim time’. Albrecher and
Teugels considered a dependence structure through copula®.
Kwan and H. Yang proposed another dependent structure
where claim size distribution depends on inter-claim time’.
Himanshu, Ashivani, and Vivek studied a probability model of
continuous fertility’. Himanshu and Ashivani developed a
probability model for the child mortality under the assumption
that the families under consideration have one birth prior to the
study’. Kusum and Srivastava derived p.d.f of Inverse Maxwell
distribution which is suitable for survival models®. Meng,
Zhang, and Guo considered a dependent setting where the time
between two claims determines the distribution of the next
claim size’. Asimit and Badescu introduced a general
dependence structure of heavy tailed claim sizes in the presence
of a constant force of interest'’. Dhanesh studied a single server
dependent queueing model where the arrival rate depends on
time and service rate is constant''. Hamid, Asghar and Mostafa
the probability of occurrence of earthquakes in induced
landslide based on slop, material, precipitation, fault data and
weight composition using ArcGIS'>. Chen and Yuen
constructed a dependent structure via the conditional
distribution of the inter-arrival time given the subsequent claim
size being large'. Xie and Zou described a dependence model
of inter-arrival time, premium size and claim size!®, Albrecher,
Boxma, and Ivanovs extended the study by Kwan and H. Yang

to a generalised risk model with phase type distribution'”.
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Chadjiconstantinidis and S. Vrontos studied a dependent
renewal risk model under Farlie-Morgenstern copula'®.

Motivated by the work of Albrecher and Boxmain this paper a
generalization of the dependent model to a renewal process is
considered, where the inter-arrival time of two consecutive
claims follows Erlangl. For this renewal model, we derive
explicit solutions for the probability of survival via Laplace-
Stieltjes transform.

Preliminaries

Consider a risk process where the claims occur as an ordinary
renewal process. Let {Ti}j2; be a sequence of strictly positive,
independent and identically distributed random variables, Ti
denotes the inter-arrival time between the (i-1)™ and i™ claims.
We assume Ti follows Erlang (n, A) distribution with
probability distribution function.
nen-1 e—)»t
I fort>0

k(t) = o=
where n is a positive integer. In this paper, we illustrate ideas
by restricting our attention to the case in which n=2. Let ml
denote the mean of this distribution. Let {Xi}j=; be a sequence
of independent and identically distributed random variables
where Xi denote the i™ claim size. Let f(x) denotes the p.d.f, p
the average and %(s) the Laplace-Stieltjes transform (LST).

Consider the following surplus process Uy(u) of an insurance

portfolio.
N(t)

U(w) =u+ct— Z Xk,
k=1

where u>0 is the initial surplus, c>0 is the constant rate of
premium, and N(t) is the number of claims up to time t. Let us
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assume the following Markovian model for the claim
occurrence process: if a claim size Xi is greater than a threshold
Ai then the time until the next claim follows Erlang(2)
distribution with parameter f3;, otherwise it follows an Erlang
(2) distribution with another parameter 3,. The quantities Ai
are assumed to be i.i.d random variable with distribution
function F(A).

The net profit condition is
PX=A) PX<A4
"< 2C< ( ) N ( ))
By B,

Let T = inf{t > 0;U(t) < 0} be the time of ruin, @;(u) =
P{T = 0/U(0) = u, T; ~ Erlang(Z, Bi)} be the ultimate
survival probability and ¥;(u) = 1 — @;(u) be the ultimate ruin
probability.

Integro-Differential
Transform

Equation and Laplace

In this section we show that @ satisfies an integro-differential
equation. This equation will be the basis for our explicit
solution for ®.

Theorem 1. The ultimate survival probability @; (u) (i = 1; 2)
satisfies the following integro-differential equation

Lo, - cpos(w) = -2 7 M) [Fipa <
x) f(x)@1(s — x) + P(A > 0)f(x)D,(s — x)] dyds (1)

Proof. By conditioning on the time and the amount of the first
claim and for i=1.

Letk,(t) = Bfte_ﬁlt

P,(u) = fmkl(t) fu : [P(A < x)f(x)D;(u+ ct—x)

+ P(A > x)f(x)@,(u + ct — x)]d,d;
Puts=u+ct

¢y (u) = f Tk (Y f [PCA < 01600, (5 — )
Y P> 00,6 — ]dyd,

Differentiating with respect to u we get

d
¢ 0:(w) — B,0: ()

-~ | e () | Tpca

< 0Of(x)0;(s — x)
+ P(A > x)f(x)D,(s — x)]d,dy
Similarly we can prove the result for i = 2.

Theorem 2 Let 4 (s) be the Laplace transform of @ (u) (i =1,
2) and Re s > 0. Define

Xl(s)zf e S*AX)f(x)dx
0
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® = [ e(1-A)feods
Then

c?s? — 2¢Bys
ZB1X2(S) Q)Z(O) +c [‘I‘B%(l Xa (S))

c?s? — 2¢Bys
0055 |+ [+B%(1—Xz(5))H ]

i = T Ez 50 .
1S ces 2¢cB,s
["‘B%(l - X1 (s))] [+B%(1 - (s))] — BB ()x2(5)

] L9,

(2)
o2 2¢Bys ]
BzXl(S) @1(0) +c [‘l‘ﬁl(l _ Xl(s)) ?,(0)
— 2cfB;s
+B%X1(S)®1(0) -2c Bl] [+Bl(1 - Xl(s)) — 2¢B,10,(0)

®E(S) = [ c?s? — 2¢Bys ] [ c2s% — 2¢Pys

+B2(1—xa ()| [+B2(1 - Xz(S))] — BB ()2 (5)

3)
Proof. Differentiating (1) with respect to u for i=1 we get
Czd—2¢1(U) — 2¢By iQ’-(Ul) +Bi0: (W)
d? dy
= p? f [P(A < )8 (u— %)
+ P(A > x)f(x)0,(u — x)]dy
Multiplying by e™ and integrating from 0 to o

d
c? [—EQ)l(O) —s@,(0) + szqﬁ(s)] - ZCBI[—Ql(O) +561(5)]
+B251(8) = B2 [51 ()%, () + 3()x, () |

=
czd%q)l(O) + [czs - 2B1c](2)1(0)

= 4(5) [czs2 — 2B, cs + B (1
— Br1, () g2(5)

~ % (s))]

Similarly for i=2
2 d 2
c EQ)z(O) + [c s — ZBZC]Q)Z(O)
= 5(s) [czs2 —2B,cs + Bi (1 - xz(s))]
A ACPHO)

The result is obtained by solving the above simultaneous
equations for 47(s) and 43 (s)
Inversion of Laplace Transform

After getting the formula of »7(s) and 4;(s) next we want to
determine ®,(0) and ®,(0). Since ,'m@i(x) = 1 we
have s 4i(s) = 1;i=1, 2.

Using the above result w.l.o.g in (2), we obtain
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c22x, () 5-0,(0)

c?s? —2cB,s |

2 _@1 O
+p2 (1 -2, (s))l a®©

+B2x, ()0, (0) [c2s — 2¢B, |

c?s? — 2cB,s
B (1 B XZ(S))l [c?s — 2¢B, ]9, (0)
c?s? — 2¢f;s c?s? — 2cB,s
+62 (1-1,)|[+62 (1 - xz(S))l
—BBox, ()7, (5)

+

1 =Ilim

s—0

Ju

S

c2p21,(0) - (0)
+c2p7 (1 - 1,(0)) 1- 8, (0)
—B1x,(0)8,(0)2ch,
B2 (1 - 2,(0)) 2¢B, 8, (0)
—2¢B, B2 + 2cB, B3, (0) — 2¢BZ,
—B2B2, (0) + B2, (0)2¢B, — BB, (0)

We have y,(0) = P(x < 4),%,(0) = P(x = A) and %, (0) +
%, (0) = L.AIso (X/x < A) = —,(0), E(X/x = A) = —x, (0) .

Sop= —X’1 0) - Xz (0)

C2P2P(x < A)=-0,(0) + C*PZP(x > A)~-0,(0) +
2cB2B,P(x < A)(1 — B,(0)) + 2¢p, B2(1 — 9, (0))P(x >
A) = Bipou )

Since r1 is a zero of denominators of (2) and (3) it must also be
a zero of the numerators, giving

czﬁfxz(rl)%(Z)z(O) + c? [czrf — 2B,cry + Bi (1 -
%(0)] 3810 + B, (118, (0)[c?ry — 2B,c] +
[czrf — 2B, cry + Bi (1 - xz(rl))] [c?r; — 2B,¢]01(0) = 0(5)

czﬁixl(rl)%Q)l(O) + c? [czrf — 2B, cry + Bf (1 -
%, ()| 3820 + B3, (r1)@ (0)[c?r, — 2B, +
[czrf — 2B, cry + Bf (1 -% (rl))] [c?r; — 2B,c]9,(0) = 0(6)

Solving (5) and (6) we get

20 92(0) = —[er1 - 2p,c] 22 @)
39:0) = —[e?r1 - 2p,] > @®)

Substituting in (4)
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BIBon— 2¢PIP,P(x < A) — 2cBiB,P(x > A) + BIP(x <
A)c?r1 9,(0) + B3P (x > A)c?r1p, (0) = 0 (9)

Then (2) and (3) becomes

iy B 9)02(0)]cBs—c?ry|+[c?s2-2p,c5+3 (1-1,(9)) |01 (0)[cZs—c?ry]

(31(5) - [czsz—2cBls+Bi(1—;(1(s))][c252—2cﬁzs+[3§(1—x2(s))]—[}i[}%xl(s)xz(s)
(10)

_ ngl(s)%(o)[CZS—C2r1]+[C252—2B1CS+Bi(1—X1(S))]®2(0)[CZS—CZI‘1]

(Dl(s) = [

c252-2cB, s+B3 (11, (5) )| [ €252 —20B,5+B3 (12, ()| -B3 B32, () ()

(11
Values of ®4(0) and ®,(0)

Now we need the value of ®,(0) to substitute in equation (9) for
getting the value of ®,(0). The renewal risk process by Dickson
becomes dependent risk model only when the claim size goes
beyond a threshold Ai'’. So we make an assumption that the
initial claims are less than Ai. Then we can adopt the formula
of @,(0) by Dickson and Hipp'®.
0, (0) = Zahin

5, (12)
where s is solution of the equation

c?s?2 = 2cBics+ R2(1—x) =0
Substituting in (9) we get the value of @,(0).

On the other hand if the initial claims are larger than the
threshold it becomes dependent model only when the claim size
goes below the threshold Ai. So we can adopt the above method
for finding ®,(0) using B, in equation (12) and substitute in (9)
to get the value of @,(0).

Calculation of Survival Probabilities

Equations (12) and (9) gives the values of ®1(0) and ®2(0).
Substituting in equations (10) and (11) and inverting them gives
the survival probabilities with initial surplus u.

Example-1: For the special case let the initial claims occur
according to Erlang(2) with parameter ;. Also let X~ Erlang
(2, 2), A~ Erlang (2, 2) B=2, P,=1, c=2. The net profit
condition is satisfied. Then by inverting the Laplace transforms
and applying Lundberg's inequality we get
?,(x) =1 — 0.0026e~*+6661x 4 (0,0444¢~24931x
— 0.3040e"11182x
?,(x) =1 —0.0008e~*6661% 4+ 0.0151e24931x
—0.1302¢"11182x

Example-2: In the above example let us assume the initial
claims occur according to Erlang (2) with parameter B, Then
the result becomes
?:(x) =1 + 0.0138e~*+6661X 4 (0.0517¢24931%

— 0.3734¢"11182x
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?,(x) = 1 + 0.0042e~*+6661X 4 (,0175e24931x —
0.1599¢11182x

Conclusion

Figure 1 shows the results of example 1 and 2. We made the
above assumption on the distribution of initial claims because
of its analytical tractability. So we can use the very same
method for finding the values of ruin and survival probabilities
of dependent risk model when the distribution is Erlang.

1.00 +

095

090

085

0 1 2 3 4 5

Solid lines: Values of example 1. Dotted lines: Values of example 2.
Figure-1

Survival probability curve of example 1 and 2.
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