

Vol. **3(2)**, 10-12, February (**2015**)

A Note on Q-Fuzzy Ideal of Quotient Near-Ring Group

Bhimraj Basumatary

Department of Mathematical Sciences, Bodoland University, Kokrajhar, Assam, INDIA

Available online at: www.isca.in. www.isca.me

Received 9th January 2015, revised 30th January 2015, accepted 10th February 2015

Abstract

In this paper we shall study on Q-fuzzy ideal of quotient N-group. We give the definition of Q-fuzzy subnear-ring and Q-fuzzy ideal of N-group. We shall investigate some of their properties and prove some characterizations on quotient N-group with the help of Q-fuzzy subnear-ring and Q-fuzzy ideal.

Keywords: Q-fuzzy subnear-ring, Q-fuzzy ideal, quotient N-group.

Introduction

Zadeh¹ introduce fuzzy set in 1965. The idea of the fuzzy ideal in near-ring is discussed by Zaid². Solarairaju et al.³ introduce the new structures of Q-fuzzy groups. On the other hand Muhammad Akram⁴ introduces the T-fuzzy Ideals in Near-Ring. Muhammad Akram⁴ also introduce about quotient nearring. Bartakur et al⁵. has discussed on Q-fuzzy N-subgroup and O-fuzy ideal of an N-group. Basumatary et al⁶. has discussed on Q-fuzzy ideal and Q-fuzzy quotient near-ring. Generally in this work, we shall study quotient N-group with the help of Qfuzzy² ideals and some of their properties.

Preliminaries

Definition: Consider near-ring N and E as an additive group. Then E is said to be near-ring group or left N-group if there exist a mapping $N \times E \rightarrow E$, $(n, e) \rightarrow ne$ such that

(n+m)e=ne+me(nm)e=n(me)

1.e=e, for all n, m \in N and x \in E.

Unless otherwise stated we denote the zero element of E by 0. Note: Our discussion by an N-group we mean left N-group.

Definition: Consider a set E as a non empty set. Then a function

 $\gamma: A \rightarrow [0, 1]$ is a fuzzy subset of E.

Definition: A function $\gamma : E \times Q \rightarrow [0, 1]$ is called Q-fuzzy² set in E, where Q be a set and E be group respectively.

Definition: Consider a function "f" from a set A to B and a Q-

Definition: Let $Im(\lambda)$ denote the image set of λ . Let λ be a Qfuzzy² set in a set E. For "t" in [0, 1] the set $\lambda_t = \{ x \in E, q \in Q \}$ $\lambda(x, Q) \ge t$ is called Q-level subset of λ .

Definition: Consider γ a Q-fuzzy² subset in a near-ring E, then γ is Q-fuzzy² subnear-ring of E if it holds the conditions

1. $\gamma(p-s, q) \ge \gamma(p, q) \land \gamma(s, q)$

2. $\gamma(ps, q) \ge \gamma(p, q) \land \gamma(s, q)$; for p, $s \in E$ and $q \in Q$.

Definition: A Q-fuzzy² subnear-ring γ in E is called Q-fuzzy² ideal

1. $\gamma(p + s - p, q) \ge \gamma(s, q)$

2. $\gamma(ps, q) \ge \gamma(s, q)$

3. $\gamma((p+z)s-ps, q) \ge \gamma(z, q)$; p, s, z \in E, q \in Q

Definition: Consider γ a Q-fuzzy² subset of an N-group E. Then γ is said to be Q-fuzzy² subnear-ring of E if for all $n \in \mathbb{N}$, p, $s \in E$ the following holds:

 $\gamma(p-s, q) \ge \gamma(p, q) \land \gamma(s, q)$

ii. $\gamma(np, q) \ge \gamma(p, q)$

Definition: A Q-fuzzy² subnear-ring γ in N-group E is called Q-fuzzy² ideal if for $n \in N$ and

p, $s \in E$ the following condition holds:

1. $\gamma(p+s, q) \ge \gamma(p, q) \land \gamma(s, q)$

2. $\gamma(p + s - p, q) \ge \gamma(s, q)$

3. $\gamma(n(p+s)-np, q) \ge \gamma(s, q)$

Theorem: Let E and F be two N-groups and h:E \rightarrow F be an Nepimorphism. Suppose γ be a Q-fuzzy² ideal of E then h(γ) is Q-fuzzy² ideal of F.

Proof: We have γ is Q- fuzzy ideal on N-group E.

Now $h(\gamma)(u-v, q) = \bigvee_{h(w)=u-v} \gamma(w, q)$

 $=\bigvee_{h(p-s)=u-v}\gamma(p\text{-}s,q)$

 $= \bigvee_{h(p)=u,h(s)=v} \gamma(p-s, q)$

 $\geq \left[\bigvee_{h(p)=u} \gamma(p,q)\right] \wedge \left[\bigvee_{h(s)=v} \gamma(s,q)\right]$

= $h(\gamma)(u, q) \wedge h(\gamma)(v, q)$.

Vol. **3(2)**, 10-12, February (**2015**)

Now let $p \in F$, $n \in N$ and $q \in Q$, so we have $z \in E$ such that h(z) = p and hence h(nz) = np.

$$\begin{split} &h(\gamma)(np,\,q) = \{ \ \bigvee_{h(m) = np} \gamma(m,\,q) : m \epsilon E, \, q \epsilon Q \ \} \\ &\geq \{ \ \bigvee_{h(nz) = np} \gamma(nz,\,q) : nz \epsilon E, \, q \epsilon Q \ \} \end{split}$$

$$= \{ \bigvee_{nh(z)=np} \gamma(nz, q) : nz \in E, q \in Q \}$$

$$\geq \{ \bigvee_{h(z)=p} \gamma(z,q) : z \in E, q \in Q \}$$

=
$$h(\gamma)(p, q)$$
.

Thus $h(\gamma)$ is Q-fuzzy² subnearing of F.

Let u, $v \in F$ and $q \in Q$, so p, m in E such that h(p)=u and h(m)=v.

Now
$$h(\gamma)(u+v, q) = \bigvee_{h(w)=u+v} \gamma(w, q)$$

$$=\bigvee_{h(p+m)=u+v}\gamma(p+m,q)$$

$$=\bigvee_{h(p)=u,h(m)=v}\gamma(p+m,q)$$

$$\geq \left[\bigvee_{h(p)=u} \gamma(p,q)\right] \wedge \left[\bigvee_{h(m)=v} \gamma(m,q)\right]$$

$$\geq h(\gamma)(u, q) \wedge h(\gamma)(v, q).$$

Let p, m ϵ F so a, b ϵ E such that h(a)=p, h(b)=m and q ϵ Q.

$$h(\gamma) \ (p+m-p, \ q) = \bigvee_{h(u)=p+m-p} \gamma(u, \ q)$$

Now since we have h(b+a-b)=m+p-m, therefore

 $h(\gamma)$ (m+p-m, q) $\geq \gamma$ (b+a-b, q)

 $\geq \gamma(a, q)$, whenever h(a)=p

$$\geq \bigvee_{h(a)=p} \gamma(a, q)$$
$$=h(\gamma)(p, q)$$

Also let $n \in N$ and p, $m \in F$. Since "h" is N-epimorphism so, we have $a, b \in E$ such that h(a)=p, h(b)=m

Now

$$h(\gamma) \; (\; n(m+p)\text{-}np, \; q) \text{=} \; \bigvee_{h(u)=n(\; p+m)-np} \gamma(u, \; q)$$

Now since we have h[n(a+b)-na]=n(p+m)-np, therefore

 $h(\gamma)$ $(n(p+m)-np, q) \ge \gamma(n(a+b)-na, q)$

 $\geq \gamma(b, q)$, whenever h(b)=m

$$\geq \bigvee_{h(b)=m} \gamma(b,q)$$

 $=h(\gamma)(m, q)$

Thus $h(\gamma)$ is Q-fuzzy² ideal of F.

Theorem: Consider an ideal K of N-group E. Consider a Q-fuzzy ideal γ of E, let us consider Q-fuzzy set φ of E/K such that $\varphi(x+K, q) = \sup_{a \in K} \gamma(x+a, q)$ then φ is Q-fuzzy ideal of the quotient N-group E/K with respect to K.

Proof: Here ϕ is clearly well define as if we consider two elements a, b in N-group E so that (a+K) is equal to (b+K).

Then we have b=a+m for some m in K.

Now
$$\phi(b+K, q) = \bigvee_{z \in K} \gamma(b+z, q)$$

$$= \bigvee_{z \in K} \gamma(a+m+z, q)$$

$$=\bigvee_{m+z=p\in K}\gamma(a+p,q)$$

$$=\phi(a+K,q).$$

Now we try to show ϕ is Q-fuzzy² subnearing in E/K. Consider (p+K), (m+K) be two elements of E/K.

 $\Phi((p+K)-(m+K), q) = \phi((p-m)+K, q)$

$$= \bigvee_{z \in K} \gamma((p\text{-m}) + z, q)$$

$$= \bigvee_{u-v=z \in K} \gamma((p-m+(u-v), q))$$

$$= \bigvee_{u-v=\tau \in K} \gamma((p+u)-(m+v), q)$$

$$\geq [\bigvee_{u \in K} \gamma((p+u), q)] \wedge [\bigvee_{v \in K} \gamma((m+v), q)]$$

$$= \phi(p+K, q) \land \phi(m+K, q)$$

Let $n \in N$ and p be an element of E.

$$\Phi(\mathsf{n}(\mathsf{p}{+}\mathsf{K}),\,\mathsf{q}) = \Phi(\mathsf{n}\mathsf{p}{+}\mathsf{K},\,\mathsf{q}) = \bigvee_{z \in K} \gamma(\mathsf{n}\mathsf{p}{+}z,\,\mathsf{q})$$

$$= \bigvee_{uv=z \in K} \gamma(np+uv, q)$$

$$\geq \bigvee_{u \in K} \gamma(p+u, q)$$

$$=\phi(p+K,q)$$

Hence ϕ is Q-fuzzy² subnearing in E/K.

Now we try to show ϕ is Q- fuzzy² ideal in E/K. Consider (p+K), (m+K) be two elements of E/K. $\Phi((p+K)+(m+K), q) = \phi((p+m)+K, q)$

$$= \bigvee_{z \in K} \gamma((p+m)+z, q)$$

$$= \bigvee_{u+v=z \in K} \gamma((p+m)+(u+v), q)$$

$$=\bigvee_{u+v=z\in K}\gamma((p+u)+(m+v),\,q)$$

$$\geq [\bigvee_{u \in K} \gamma((p+u), q)] \land [\bigvee_{v \in K} \gamma((m+v), q)]$$

$$=\phi(p+K,q) \wedge \phi(m+K,q)$$

$$\Phi((p+K)+(m+K)-(p+K), q)=\phi((p+m-p)+K, q)$$

$$= \bigvee_{z \in K} \gamma((p+m-p)+z, q)$$

$$\geq \bigvee_{z \in K} \gamma(m+z, q)$$

$$= \phi(m+K, q)$$

Let $n \in N$ and (p+K), (m+K) be two elements of E/K.

$$\Phi(n((p+K)+(m+K))-n(p+K), q)=\Phi((n(p+m)-np)+K, q)$$

$$= \bigvee_{z \in K} \gamma(n(p+m)-np)+z, q)$$

$$\geq \bigvee_{z \in K} \gamma(\text{nm+z}, q)$$

Vol. **3(2)**, 10-12, February (**2015**)

```
\geq \bigvee_{z \in K} \gamma(m+z, q)
=\varphi(m+K, q)
Thus \varphi is Q-fuzzy<sup>2</sup> ideal of E/K.
```

Theorem: Consider an ideal K of N-group E. Then we can have one to one mapping between the set of Q-fuzzy² ideals γ of E so that $\gamma(0, q)$ is equal to $\gamma(s, q)$ for all "s" in K and the set φ , the set of all Q-fuzzy² ideal of E/K.

Proof: Let γ be Q-fuzzy 2 ideal of E then following theorem $^{3.2}$ we can show

 $\phi(x+K, q) = \sup_{a \in K} \gamma(x+a, q)$ is Q-fuzzy² ideal of E/K. Also we have $\gamma(0, q) = \gamma(s, q)$.

Now we have from definition^{2.9} $\gamma(a+s, q) \ge \gamma(a, q)$. Also $\gamma(a, q) = \gamma(a+s-s, q) \ge \gamma(a+s, q)$. Thus we have $\gamma(a+s, q) = \gamma(a, q)$, for all $s \in K$. Thus $\varphi(a+K, q)$ is equal to $\gamma(a, q)$. So the corresponding $\gamma \mid \rightarrow \varphi$ is one to one.

Now consider ϕ be Q-fuzzy² ideal in E/K. Define Q-fuzzy² set γ in E so that $\gamma(a, q)$ is equal to $\phi(a+K, q)$, for all $a \in K$.

```
Let p and m be two element of E and n \in N \gamma(p-m, q) = \varphi((p-m)+K, q) = \varphi((p+K)-(m+K), q) \geq \varphi(p+K, q) \land \varphi(m+K, q) = \gamma(p, q) \land \gamma(m, q) \gamma(np, q) = \varphi(np+K, q) \geq \varphi(p+K, q) = \gamma(p, q).
```

Hence γ is Q-fuzzy 2 subnear-ring in E.

Now let p, m be two element N-group E and n be an element of N.

```
\begin{split} \gamma(p+m,\,q) &= \varphi((p+m) + K,\,q) \\ &= \varphi((p+K) + (m+K),\,q) \\ &\geq \varphi(p+K,\,q) \, \wedge \, \varphi(m+K,\,q) \\ &= \gamma(p,\,q) \, \wedge \gamma(m,\,q) \\ \gamma(p+m-p,\,q) &= \varphi((p+m-p) + K,\,q) \\ &= \varphi((p+K) + (m+K) - (p+K),\,q) \\ &\geq \varphi(m+K,\,q) \\ &= \gamma(m,\,q) \\ \gamma(n(p+m) - np),\,q) &= \varphi((n(p+m) - np) + K,\,q) \\ &= \Phi(n((p+K) + (m+K)) - n(p+K),\,q) \\ &\geq \varphi(m+K,\,q) \\ &= \gamma(m,\,q) \end{split}
```

Thus γ is Q-fuzzy² ideal in N-group E. Clearly $\gamma(a, q)$ is equal to $\varphi(a+K, q)$ which is again equal to $\varphi(K, q)$, for all "a" in K. This indicates that $\gamma(0, q)$ is equal to $\gamma(s, q)$ for all "s" in K.

Theorem: Let us consider K be an ideal of an N-group E. We can have then Q-fuzzy² ideal γ of N-group E so that $\gamma(0, q)$ is "t" and λ_t is K, for $t \in [0, 1]$, where λ_t is called Q- level subset of λ .

Proof: It is straightforward.

Theorem: Consider a Q-fuzzy² ideal γ of a N-group E also $\gamma(o,q)$ is "t". Then φ is Q-fuzzy² ideal of E/λ_t , where φ is constructed as $\varphi(p+\lambda_t,q)=\gamma(p,q)$, for $p\in E$ and λ_t is called Q-level subset of λ .

Proof: The prove is straightforward.

Conclusion

In this work, we have defined the definition of Q-fuzzy² subnearing, Q-fuzzy² ideal of N-group. We introduced the definition of Q-fuzzy² subnear-ring, Q-fuzzy² ideal of N-group. With the help of Q-fuzzy² subnear-ring and Q-fuzzy² ideal we have discussed on Q-fuzzy² quotient N-group and proved some theorems on Q-fuzzy quotient N-group.

Reference

- Zadeh L.A., Fuzzy sets, Information and Control, 8, 338-353 (1965)
- Zaid A., On fuzzy sub near-rings, Fuzzy Sets and System, 44, 139-146 (1991)
- **3.** Solairaju A., Nagarajan R., A new structure and construction of Q-fuzzy group, *Advance in Fuzzy Mathematics*, **4**, 512-517 (**2009**)
- **4.** Akram M., On T-Fuzzy Ideals in Nearings, *International Journal of Mathematics and Mathematical Sciences*, doi:10.1155/2007/73514 (**2007**)
- 5. Bartakur G.K., Khargharia J., On Q-fuzzy N-subgroup and Q-fuzy Ideal of an N-group, *International Journal of Fuzzy Mathematics and Systems*, 3(2), 153-164 (2013)
- 6. Basumatary B., Bartakur G.K., On Q-fuzzy Ideal and Q-fuzzy Quotient Near-Ring, Research Journal of Mathematical and Statistical Sciences, 2(7), 4-6, (2014)
- **7.** Mourad O.M., On Q-Fuzzy R-Subgroups of Near-Rings, *International Mathematical Forum*, **8**, 387-393 (**2013**)
- **8.** Bhakad S.K. and Das P., Fuzzy subrings and ideals redefined, *Fuzzy Sets and System*, **81**, 383-393 (**1996**)
- **9.** Bhakad S.K., Das P., On the definition of a fuzzy subgroup, *Fuzzy Sets and System*, **51**, 235-241(**1992**)
- **10.** Devi R., On Intuitionistic Q-Fuzzy Ideal of Near-Rings, NIFS, **15**(3) 25-32 (**2009**)