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Abstract

In this paper we shall study on Q-fuzzy ideal of quotient N-group. We give the definition of Q-fuzzy subnear-ring and Q-fuzzy
ideal of N-group. We shall investigate some of their properties and prove some characterizations on quotient N-group with the

help of O-fuzzy subnear-ring and Q-fuzzy ideal.
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Introduction

Zadeh' introduce fuzzy set in 1965. The idea of the fuzzy ideal
in near-ring is discussed by Zaid®. Solarairaju ef al.’ introduce
the new structures of Q-fuzzy groups. On the other hand
Muhammad Akram® introduces the T-fuzzy Ideals in Near-
Ring. Muhammad Akram® also introduce about quotient near-
ring. Bartakur e al’. has discussed on Q-fuzzy N-subgroup and
Q-fuzy ideal of an N-group. Basumatary ez al’. has discussed
on Q-fuzzy ideal and Q-fuzzy quotient near-ring. Generally in
this work, we shall study quotient N-group with the help of Q-
fuzzy” ideals and some of their properties.

Preliminaries

Definition: Consider near-ring N and E as an additive group.
Then E is said to be near-ring group or left N-group if there
exist a mapping NXE —E, (n, e) — ne such that
(n+m)e=ne+me

(nm)e=n(me)

1.e=e, for all n, meN and xcE.

Unless otherwise stated we denote the zero element of E by 0.
Note: Our discussion by an N-group we mean left N-group.

Definition: Consider a set E as a non empty set. Then a
function
vy : A— [0, 1] is a fuzzy subset of E.

Definition: A function y : ExQ —[0, 1] is called Q-fuzzy2 set
in E, where Q be a set and E be group respectively.

Definition: Consider a function “f” from a set A to B and a Q-
fuzzy” set u in A. Then p is a Q- fuzzy” set in B defined by

SUPy - x,q): f~1(y) #
f(p)(y, q)={ Pxef 1(y)lJ-( Q) (Y) . (1)

0 : otherwise

Definition: Let Im(A) denote the image set of A. Let A be a Q-
fuzzy2 set in a set E. For “ t” in [0, 1] the set A={ x€E, qeQ;
AMx, Q)>t} is called Q-level subset of A .
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Definition: Consider y a Q- fuzzy” subset in a near-ring E, then
y is Q- fuzzy” subnear-ring of E if it holds the conditions

L y(p-s, @) =v(p. @) A ¥(s, Q)

2.9(ps, @) = v(p, q) AY(s, q); for p, seE and qeQ.

Definition: A Q-fuzzy” subnear-ring v in E is called Q-fuzzy”
ideal

. v(p +s-p, @) 2v(s, q)

2. y(ps, q) (s, q)

3. v((p+ 2)s-ps, Q) 2 v(z, Q); P, s, z€E, qeQ

Definition: Consider y a Q-fuzzy” subset of an N-group E.
Then y is said to be Q-fuzzy” subnear-ring of E if for all neN, p,

seE the following holds:
i. v(p-s, 9= (P, Q) A ¥(s, Q)
ii. v(np, q) = v(p, Q)

Definition: A Q-fuzzy® subnear-ring y in N-group E is called
Q-fuzzy” ideal if for neN and
ps seE the following condition holds:

L. Y(p+s, @) =v(p, @) AY(S, Q)
2. Y(p +s-p, qQ) = ¥(s, Q)
3. y(n(p+ s)-np, q) = ¥(s, q)

Theorem: Let E and F be two N-groups and h:E —F be an N-

epimorphism. Suppose y be a Q-fuzzy” ideal of E then h(y) is
Q-fuzzy” ideal of F.
Proof: We have vy is Q- fuzzy ideal on N-group E.

Now h(y)(u-v, q)= h(w;iu_vy (w, )

= \Y -S,
Moy Y(p-s, q)
= \ Y(p-s, Q)

 h(p)=uh(s)=v
2L P DALY Y0
=h(y)(u, @) Ah(y)(v, @).
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Now let peF, neN and qeQ, so we have zeE such that h(z)=p
and hence h(nz)=np.

h(y)(np, @)= { h(m\)/:np y(m, q) : meE, qeQ }

>{ VvV y(nz, q):nzeE, qeQ }
h(nz)=np

={ V  y(nz, q) : nzeE, qeQ }
nh(z)=np

>{ V v(z,q):z€E, qeQ }
h(z)=p
=h(y)(p, ©-

Thus h(y) is Q- fuzzy” subnearing of F.
Let u, veF and qeQ, so p, m in E such that h(p)=u and h(m)=v.

Now h(y)(u+v, @)= " N vv(w, o))

w)=u+

= \Y
h( p+m)=u+v

y(p+m, q)

= \Y3
h(p)=u,h(m)=v

[ vV y@.PIA [ VvV vy(m,q)]
h(p)=u h(m)=v

= h(y)(u, @) Ah(Y)(v, Q).

y(p+m, q)

Let p, meF so a, beE such that h(a)=p, h(b)=m and qeQ.
h(y) (p+m-p, q)= Y ) y(u, q)

(u)=p+m—

Now since we have h(b+a-b)=m+p-m, therefore
h(y) (m+p-m, q) > y(b+a-b, q)
>v(a, q), whenever h(a)=p
2 v a?
s Y(a, q)

=h(y)(p, @)

Also let neN and p, meF. Since “h” is N-epimorphism so, we
have a, beE such that h(a)=p, h(b)=m

Now

h(y) (n(m+p)-np, q) M) )
Now since we have h[n(a+b)-na]=n(p+m)-np, therefore
h(y) (n(p+m)-np, q) > y(n(a+b)-na, q)

>v(b, q), whenever h(b)=m

> Vv b,
_h(b):mv( qQ

=h(y)(m, q)
Thus h(y) is Q-fuzzy2 ideal of F.

v(u, )

Theorem: Consider an ideal K of N-group E. Consider a Q-
fuzzy ideal y of E, let us consider Q-fuzzy set ¢ of E/K such
that p(x+K, q )=sup.y(x+a, q) then ¢ is Q-fuzzy ideal of the
quotient N-group E/K with respect to K.

Proof: Here ¢ is clearly well define as if we consider two
elements a, b in N-group E so that (a+K) is equal to (b+K).
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Then we have b=a+m for some m in K.
Now ¢(b+K, q)= V y(b+z, q)
zeK

V vy(a+m+z, q)
ek

VvV y(atp, q)

m+z=pekK

=b(a+K, q).

Now we try to show ¢ is Q-fuzzy” subnearing in E/K.
Consider (p+K), (m+K) be two elements of E/K.

D ((p+K)-(m+K), @)= d((p-m)+K, q)
= V y((p-m)+z, q)

€K
=

= V

>[ L,ZK y((p+w), PIA [ V;/K y((m+v), q)]
=p(p+K, @) A d(m+K, q)

Y((p-m+(u-v), q)
K

< v((p+u)-(m+v), q)

Let neN and p be an element of E.
O (n(p+K), q) =®(np+K, q)= z;/K y(np+z, q)

= VvV y(np+uv, q)
K

uv=ze
>V y(p+u, q)
ucK

=b(p+K, q)
Hence ¢ is Q-fuzzy” subnearing in E/K.

Now we try to show ¢ is Q- fuzzy” ideal in E/K.
Consider (p+K), (m+K) be two elements of E/K.
D((p+K)+(m+K), g)= d((p+m)+K, q)

=V y((p+tm)+z, q)
€K

= \Y%

u+v=ze

« y((p+m)+(u+v), q)

= V

u+v=ze

>[ L,ZK y((p+u), PIA [ V;/K y((m+v), q)]

=p(p+K, @) A d(m+K, q)
@ ((p+K)+(m+K)-(p+K), q)=d((p+m-p)+K, q)

= V y((p+m-p)+z, q)
€K

< y((p+u)+(m+v), q)

>V y(m+z, q)
€K
=p(m+K, q)

Let neN and (p+K), (m+K) be two elements of E/K.
Now

D (n((p+K)+(m+K))-n(p+K), q)=d((n(p+m)-np)+K, q)
= Z;/K y(n(p+m)-np)+z, q)

>V y(hm+z, q)
ek
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>V y(m+z, q)
zeK

=p(m+K, q)
Thus ¢ is Q-fuzzy” ideal of E/K.

Theorem: Consider an ideal K of N-group E. Then we can
have one to one mapping between the set of Q-fuzzy” ideals y
of E so that y(0, q) is equal to y(s, q) for all “s” in K and the set
, the set of all Q-fuzzy” ideal of E/K.

Proof: Let y be Q-fuzzy” ideal of E then following theorem®”
we can show

bx+K, q )=sup,ky(x+a, q) is Q-fuzzy2 ideal of E/K.

Also we have (0, q)=Y(s, q).

Now we have from definition>’

y(ats, 9)=y(a, Q).

Also y(a, q)=y(a+s-s, q)>y(a+s, q).

Thus we have y(a+s, q)=Y(a, q), for all seK.
Thus ¢(a+K, q) is equal to y(a, q).

So the corresponding y | —> ¢ is one to one.

Now consider ¢ be Q-fuzzy” ideal in E/K. Define Q-fuzzy” set
vy in E so that y(a, q) is equal to ¢(a+K, q), for all aeK.

Let p and m be two element of E and neN
y(p-m, q)=d((p-m)+K, q)
=d((p+K)-(m+K), q)

20(p+K, @) A d(m+K, q)

=v(p, q) Ay(m, q)

y(np, q)=d(np+K, q)

> b(p+K, q)

=v(p, Q).

Hence v is Q-fuzzy” subnear-ring in E.
Now let p, m be two element N-group E and n be an element of
N.

y(p+m, Q=d((p+m)+K, q)

= ((p+K)+(m+K), q)

2d(p+K, @) A p(m+K, q)

=7(p, q) Av(m, q)

Y(p+m-p, Q)=d((p+m-p)+K, q)
=p((p+K)+(m+K)-(p+K), q)

>p(m+K, q)

=y(m, q)

v(n(p+m)-np), q)= d((n(p+m)-np)+K, q)
= O(n((p+K)+(m+K))-n(p+K), q)
>p(m+K, q)

=y(m, q)

Thus v is Q-fuzzy” ideal in N-group E. Clearly y(a, q) is equal

to dp(a+K, q) which is again equal to ¢(K, q), for all “a” in K.
This indicates that y(0, q) is equal to y(s, q) for all “s” in K.
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Theorem: Let us consider K be an ideal of an N-group E. We
can have then Q-fuzzy” ideal y of N-group E so that y(0, q) is
“t” and A, is K, for te[0, 1], where A is called Q- level subset of
A

Proof: It is straightforward.

Theorem: Consider a Q-fuzzy” ideal y of a N-group E also y(o,
q) is “t”. Then ¢ is Q-fuzzy’ ideal of E/A, where ¢ is
constructed as ¢(p+i, qQ)=y(p, q), for peE and A, is called Q-
level subset of A.

Proof: The prove is straightforward.

Conclusion

In this work, we have defined the definition of Q-fuzzy2
subnearing, Q-fuzzy’ ideal of N-group. We introduced the
definition of Q-fuzzy” subnear-ring, Q-fuzzy” ideal of N-group.
With the help of Q-fuzzy” subnear-ring and Q-fuzzy” ideal we
have discussed on Q-fuzzy”® quotient N-group and proved some
theorems on Q-fuzzy quotient N-group.
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