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Abstract 
It has been earlier demonstrated that an alternative and dependable tool for discriminant analysis with many groups is 
obtainable by considering all possible pairs of group of the available multi-groups. An assessment of the performance of this 
procedure is therefore made by comparing its accuracy rate alongside other conventional and common procedures of 
classification, with a distributional data set under various sample sizes. The All Possible Pairs (APP) classification 
procedure performed better than its conventional counterparts under the various scenario. Thus, the All Possible Pairs 
procedure could still remain a better option in situations of any multivariate data structure with many groups. 
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Introduction 
Many areas of applications involve collection of multivariate 
data and the linear discriminant function has often been used in 
classifying observations that are multivariate in nature as 
coming from one of two populations. Multivariate analysis 
techniques, besides discriminant analysis also includes 
principal component analysis1 and canonical correlation2. When 
more than one observation is available3 provides a procedure 
for obtaining the best linear function for discriminating the 
population under study. A close look at the allocation rule 
associated with the Fisher’s Linear Discriminant (FLD) 
procedure provides reasons to agree that the FLD procedure is 
important, easy and simple when applied to just two groups. 
Fisher R.A.4 also pointed out that although the proposed 
technique have been applied in different field especially for the 
two group case, considerable work in theory remains to be done 
for the more than two group case. In classification generally, 
solutions to Multi-class (group) problems have been proposed 
by many researchers. Examples includes Linear Discriminant 
Analysis5, Two-class linear discriminant analysis3, Nearest 
Neighbour classifier6, Aggregate Classifiers7,8, Boosting9, 
Multiple Group Logistic Model10, the Super Vector Machines11, 
One-versus-the-rest method12, Pairwise Comparison13,14, Direct 
Graph Traversal15, Error Correcting Output Coding16. None of 
these methods seems entirely satisfactory. 
 
According to17, Fisher’s approach to discriminant problem is 
parametric and relies on assumptions such as multivariate 
normality for optimality and therefore, may be less effective on 
more realistic classes of problems. The multiple group 

problems, however, has very rarely been addressed and most of 
the methods proposed for two groups do not generalize and the 
performance of the methods that can be used with several group 
is not generally reliable18. It is fair to say that there is probably 
no multi-class approach generally outperforms the others19. For 
practical problems, the choice of approach will depend on 
constraints on hand such as required accuracy, the time 
available for development and training, the nature of the 
classification problem, distributional assumptions of available 
data and the data structure. The simple, efficient and accurate 
discriminant analysis provides a good choice for practical 
multi-group classification problems. As multi-group 
classification problem is not confined to specific studies but it 
is rather faced by overall studies, verifying its general 
applicability is important. 
 
The purpose of this paper, therefore, is to make a follow up to 
the previously described procedure19 by comparing its 
performance with some conventional procedures commonly 
used in classification.  
 
Methodology 
Let us briefly recap the method for multi-group classification 
(hereafter referred to as All Possible Pairs (APP) classification 
procedure) as described previously19. Assuming we have a set 
of observation with attributes represented by variables 
푥 ,푥 , … , 푥  coming from m-population (groups). Group I has 
푛  observations, group II has 푛  observations and so on up to 
group m having 푛  observations where 푛 + 푛 +⋯+ 푛 =
푁. Our interest is to classify a future (or new) observation 
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whose origin is unknown with same attributes as 푥 ,푥 , … ,푥  
to the correct group. We desire to do this with so much caution 
so as to minimize the cost of misclassification. Fisher’s 
procedure obtains a set of m-1 linear functions which represents 
the functional relationship between the discriminating attributes 
(or variables). The possible ways of arranging n objects in r 
ways (considering the order and without repetition) is given by 

= !
!( )!

                      (1) 
 
Applying (1) into our set up, with n  replaced by m, the number 
of groups and r the possible pairs of group combination, thus 

= !
!( )!

= 휆                      (2) 
 
휆 is the number of functions arising from all possible pairs of 
combination with m-groups. 휆 would certainly be a non-
negative integer. Given m-groups, evaluation of the number of 
all possible pairs would result to 휆 number of functions in the 
form of a linear functions arising from combining possible pairs 
of groups without repetition. Clearly, we would have a set of 
discriminant Functions (DF) representing every possible pairs 
of group combinations of the m-groups (in general) as 
퐷퐹 , ,퐷퐹 , , … ,퐷퐹 , ,퐷퐹 , .                   (3) 
 

3allocation rule is to Allocate to group I if  
훼 푋 > 퐷(푖푛 푚푢푙푡푖푣푎푟푖푎푡푒 푐푎푠푒)                    (4) 
Otherwise allocate to group II 
 
Where  
푍 = 푎 푋 = 푎 푥 + 푎 푥 + ⋯+ 푎 푥                    (5) 
퐷 = (푋 + 푋 ) 푺 (푋 − 푋 )               (6) 
 
It is worthy to note that D can only be computed for two groups 
at a time. Since our derivations are in pairs, it is also possible to 
obtain for each possible pair, a corresponding and appropriate 

D-value. Thus, for m-groups and 휆  number of discriminant 
functions, we would have a set of D-values (in general) in the 
form; 
퐷 , ,퐷 , , … ,퐷 , ,퐷 ,     
 

Table-1 
Summary of Discriminating values for all Groups19 

Group I Group II Group III … Group M 
퐷 ,  퐷 ,  퐷 ,  … 퐷 ,  
퐷 ,  퐷 ,  퐷 ,  … 퐷 ,  
퐷 ,  퐷 ,  퐷 ,  … 퐷 ,  
… … … … … 

퐷 ,  퐷 ,  퐷 ,   퐷 ,  
퐷 ,  퐷 ,  퐷 ,  … 퐷 ,  

 
Since the combinatorial analysis so far has given us 휆  number 
of discriminant functions and 휆  number of D-values. It follows 
that 휆  number of rules would be required to conveniently 
allocate observations. Having stated this, the 휆  number of rules 
that can allocate future observation derived on the basis of our 
initial combinatorial concept would be such that each possible 
pair would have a corresponding allocation rule. This would 
clearly give rise to a set of 휆  independent rules for every 
possible pairs in each of the m-groups. In general, we would 
have set of rules for each of the m-groups, as 
Allocate to 
  퐺  푖푓 퐷퐹 , > 퐷 , . 
else 
  퐺  푖푓 퐷퐹 , > 퐷 , . 
else 
  퐺  푖푓 퐷퐹 , > 퐷 , . 
Otherwise 
  퐴푙푙표푐푎푡푒 푡표 퐺 . 

 
Table-2 

Summary of the Allocation Rules19 

All Original G1 All Original G2 All Original G3 … All original Gm 

퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  … 퐺  푖푓 퐷퐹 , > 퐷 ,  

퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  … 퐺  푖푓 퐷퐹 , > 퐷 ,  

퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  … 퐺  푖푓 퐷퐹 , > 퐷 ,  

… … … … … 

퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 ,
> 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,   퐺  푖푓 퐷퐹 , > 퐷 ,  

퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  퐺  푖푓 퐷퐹 , > 퐷 ,  … 퐺  푖푓 퐷퐹 , > 퐷 ,  

Otherwise Gm Otherwise Gm Otherwise Gm … Otherwise Gm 
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The initial work used a real data set to evaluate the feasibility 
and computational possibility of the APP procedure and 
compared it with the conventional FLD procedure. Here, 
multivariate normal distributed data was simulated under 
sample sizes n=30,50,100,250,500 using a U(1,10) to assign 
groups arbtrarily to them for ten groups.  Accuracy rate 
(percentage of the number of observations each procedure 
correctly classified) for each procedure was obtained by cross 
validation for the various sample sizes and an Average 
Accuracy Rate (AAC) for each of the procedures was obtained 
accordingly. 
 
Results and Discussion 
The APP classification procedure gave an appreciable accuracy 
rate that varied with change in sample size especially as sample 
size increases. Though it reduced with n=250, it however did 
not end up on a poor note with an AAC of 60.68%. The next 
was the KCA which maintained a relative increase in accuracy 
rate as sample size increases with an AAC of 60.56% very 
close to that of APP. The FLD, a more conventional and often 
commonly implored procedure in this situation produced an 
accuracy rate that was a reverse of the others, in the sense that, 
its accuracy rate decreased with increase in sample sizes 
thereby producing a poor AAC of 23.54%. The CRT performed 
poorly than the FLD with an AAC as small as 11.48%. The 
logistic regression produced a seemingly outstanding accuracy 
rate with all the sample sizes with an AAC of 99.3%. This is 
perhaps as expected because of its inability to make strong 
distributional assumption concerning a data; the method has 
been adjudged weak and a last option if paradventure, other fair 
procedure fails. Its inclusion in this work is to justify the fact 
that some researchers and data analyst uses it for classification.  
The CRT’s performance, though poor when compared with its 
non-parametric counterpart, could be attributed to the nature of 
data used, thus, it would be worth noting the nature and type of 
available data before considering the CRT as a method to be 
adopted in classification. 
 

Conclusion 
This study has so far considered and implemented the 
procedure suggested in this work, thereby observing that when 
available groups are many, it is better to consider and carry out 
evaluation in pairs. Evaluation in pairs makes sure that error 
resulting from combining the many groups at the same time is 
minimized. It also ensures that every possible pairs are 
considered appropriately since statistically accepted allocation 
rule makes provision for accommodating only two groups at a 
time. The FLD procedure might be considered for use when 
available data set is of a large sample size and the CRT 
procedure considered only after examining the nature and type 
of available data. This result agrees with that of Oyeyemi et.al. 
20 in which it was observed that the performance of the FLD 
procedure is poor with few number of variables and a larger 
sample size. The KCA could have also been an alternative but 
since we are interested in discrimination and allocation and not 
forming of clusters, it therefore faces some limitation.  
 
The procedure presented in this work has shown considerable 
and fairly appreciable performance when compared with its 
conventional parametric and non-parametric counterparts. It 
would also assuredly overcome the problem of sample size 
because even with a small sample, its performance was fairly 
outstanding. This procedure, as previously noted,  is also based 
on mathematical acceptable concepts and has in no way 
violated or deviated from known and important statistical 
principles. The procedure though may look cumbersome and 
lengthy but carefully written computer programs using a user-
friendly language would make the procedure more appreciable 
in terms of speed, time optimization and accuracy. 
Conclusively, when we have multiple groups, the conventional 
procedure only provides a method that exists in theory but 
contradictory in practice, thus, we observe and hence suggest 
that, with multiple groups, higher accuracy in discrimination 
and allocation of observation can be fairly achieved by 
adopting the procedure suggested in this work.  
 

Table-3 
Accuracy Rates (%) for each of the procedures for the various sample sizes 

Sample 
size (n) APP FLD Logistic Regression 

(LR) 
Classification and 

Regression Tree (CRT) 
K-means Cluster 
Analysis (KCA) 

30 50.0 33.3 100.0 10.0 60.0 

50 62.0 32.0 100.0 10.0 48.0 

100 67.0 21.0 100.0 10.0 56.0 

250 60.4 18.0 100.0 14.8 68.8 

500 64.0 13.4 96.6 12.6 70.0 

AAC 60.68 23.54 99.3 11.48 60.56 
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