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Abstract 
Receiver operating characteristic (ROC) Curves are used to assess the accuracy of a diagnostic test in terms of Area under 
the ROC Curve (AUC). The present work focuses on constructing confidence intervals for an ROC Curve which is derived 
from two generalized distributions, named as GHROC Curve. Another objective of the paper is to highlight the importance of 
shape parameter in the explaining the true accuracy of a test. Simulation studies are conducted to demonstrate the proposed 
methodology using different combinations of scale and shape parameters with various sample sizes. 
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Introduction 
Receiver Operating Characteristic (ROC) Curve analysis was 
developed during second world war as a statistical tool in signal 
detection theory to analyze radar devices in differentiating 
signal from noise1. In recent years, the ROC methodology has 
been extensively used in diverse areas of research such as 
Banking, Finance, Engineering, Machine Learning and Medical 
Sciences. In particular, Leo Lusted2 introduced the concept of 
ROC Curve in medicine for analysis of radiographic images. In 
medical studies, ROC Curve is an extremely useful tool applied 
in classification problems associated with diagnostic tests. This 
methodology also provides an assessment of the accuracy of the 
resulting classifier. 
 
In statistical decision theory, ROC Curve analysis is a well 
know classification tool which helps in allocating the subjects 
into one of the known two populations. The entire process of 
allocation is done using a threshold and at every threshold, a 
pair of co-ordinates gets generated, namely, 1-Specificity and 
Sensitivity. The tradeoff between these two co-ordinates gives 
rise to a unit square plot, named as Receiver Operating 
Characteristic (ROC) Curve. The co-ordinates are usually 
referred as the basic intrinsic measures of the ROC curve. 
However, there is a need to explain how accurate a test is? To 
address this a well know metric is used in the ROC context 
namely, Area under the Curve (AUC), where AUC is a 
summary measure which provides the accuracy of a diagnostic 
test3. AUC can take values between 0 and 1 with practical 
lower bound value as 0.5 (chance line). So the entire analysis 
and interpreting the efficiency of a diagnostic test purely 
depends on sensitivity, specificity and AUC. As it is defined 
above that the ROC Curve is a function of 1-specificity and 
sensitivity, these can be expressed using the following 
notations: 

Let x(t) and y(t) denote false positive rate (FPR or 1-
Specificity) and true positive rate (TPR or Sensitivity) which 
can be expressed as 
       tGtyandtFtx  11  

where F and G are the distribution functions of the populations 
without and with condition, respectively. We classify 
observations with scores above a threshold ‘t’ as positive (with 
condition or abnormal), otherwise as negative (without 
condition or normal). 
 
Using the information of x(t) and y(t), we can define the 
expression of ROC which is as follows4, 

    x(t)1FG1tROC 1    
 
In recent past, the ROC models so far developed are based on 
the normal distribution, where both normal and abnormal 
populations approximate to normal, hence the name Bi-normal 
ROC Curve 5, 6, 7. But in practical situations, the data of both the 
populations may not follow normal and may follow some other 
distributions. In medical, engineering and life studies, data tend 
to have extended tails, in this situation, the conventional Bi-
normal ROC Curve fails to explain the hidden accuracy of the 
test considered. Recently, Balaswamy et al.8 addressed this 
issue and developed a Hybrid ROC (HROC) Curve which is 
based on Half Normal and Exponential distributions. However, 
this model is restricted by considering only scale parameter to 
illustrate the accuracy. But there are other statistical measures 
which accounts for the information about the tail property of 
the data. In this paper, a generalized version of the HROC 
Curve is proposed by considering the Generalized Half Normal9 
and Generalized Exponential10 distributions with both scale and 
shape parameters corresponding to normal as well as abnormal 
populations. Along with this, 95 % confidence interval 
constructed for the measures of the proposed ROC model, 
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supported by bootstrap method. Further, the proposed 
methodology is demonstrated using simulation studies. 
 
Methodology 
Let Sxx 21 , , be the test scores, which are observed in normal 
or healthy (H) and abnormal or diseased (D) populations, 
respectively. Here, it is assumed that H and D populations 
follow Generalized Half Normal (GHN) and Generalized 
Exponential (GE) distributions with shape and scale parameters 
as 00   and  respectively. The probability density 
function and cumulative distribution function of GHN and GE 
are given as follows:  
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where    is the c.d.f. of the standard normal distribution. 
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Using the probabilistic definitions, the expressions for x(t) and 
y(t) are as follows: 
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The expression for FPR is obtained using (2), the TPR 
expression using (4) is given as 
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DDHH σandα,σ,α  are the shape and scale parameters of the 
GHN and GE distributions, respectively. The expression in (6) 
is referred as Generalized Hybrid ROC (GHROC) Curve, since 
it is combination of both GHN and GE distributions. It is also 
showed that the GHROC Curve always has a positive slope, 
monotonically increasing with false positive rate and invariant 
under strictly increasing transformations (for proofs see 
Appendix I). 

If the shape parameter values of both H and D populations 
attains a unit value (i.e., 1 DH  ), then the GHROC 
Curve in (6) reduces to the Hybrid ROC Curve8 and is 
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In ROC methodology, the statistical measure which helps in 
explaining the overlapping area and the accuracy of a classifier 
is the Area under the Curve (AUC). It can be interpreted as the 
probability that a subject randomly selected from the group 
with condition will have discrimination score indicating greater 
suspicion than that of a randomly selected subject from the 
group without condition11. It is defined as, 

 
1

0
dttyAUC
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The above expression has no closed form; hence it has to be 
evaluated using numerical integration.  
 
Confidence Intervals for AUC: The  %1100   confidence 
interval for AUC can be defined as  
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obtained using bootstrapping. Let ‘B’ be the number of 
bootstraps obtained from the data with the sample sizes 

DH nandn  respectively from H and D populations. Then the 
bootstrapped estimate of AUC and its variance are 
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Confidence Intervals for GHROC Curve: The  %1100   
confidence intervals for the GHROC Curve are estimated using 
delta method. This confidence interval for the ROC Curve 
represents the range at each point of false positive rate and its 
corresponding true positive rate. Therefore, the  %1100   
confidence intervals for false positive rate (FPR) and true 
positive rate (TPR) are as follows, 
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where the variance of false positive rate and true positive rate 
are as follows, 
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Further, the partial differentiations of FPR and TPR with 
respect to their parameters are:  
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Now, by substituting the above partial derivatives in equations 
(11) and (12), the expressions for variance of false positive rate 
and true positive rate are 
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The bootstrapped estimates and its variances of the parameters 
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The expressions in (13) and (14) will help us to plot the lower 
and upper confidence intervals of the GHROC Curve. 
 
In the next section, illustration on the proposed methodology is 
given using simulation studies at various sample sizes. 
 
Results and Discussion 
Simulation studies are conducted with different combinations 
of scale and shape parameters of both normal and abnormal 
populations and the entire simulations are done at various 
sample sizes {50, 100, 200, 300 and 500}. At every parameter 
combination and sample size, the AUC and its confidence 
intervals are obtained. The main purpose of conducting 
simulations is to show how the AUC of GHROC possesses 
different values as the scale and shape parameters of the normal 
and abnormal distributions change. The variations in the 
parameter values of both populations are used to explain the 
overlapping area in terms of AUC, this mean that as higher the 
AUC, lesser will be the overlapping area and vice versa. 
Further, to demonstrate the behavior of AUC, the entire 
simulation work is carried out with three different experiments. 
In first experiment, the shape parameter of abnormal population 
is varied by fixing the other parameters as constant; in second 
experiment, the scale parameter of abnormal population is 
varied by fixing the other parameters as constant and in the 
third experiment, the scale parameter values of both 
populations are given a unit value and the shape parameters of 
both populations are varied. The results so obtained from these 
experiments are reported in table-1. 
 
In first experiment, when 8.0D with ,6.0,5.1,1  HDH   
the AUC is observed to be around 0.6 (60% of accuracy) and as 

D  takes higher values as 1 and 1.5, the AUC is observed to 
have a better value indicating high level of accuracy. Thus, this 
reflects the scenario as the discrepancy between shape 
parameters of both normal and abnormal population’s 
increases; AUC attains a larger value indicating a better extent 
of correct classification with minimum percentage of over 
lapping area. Suppose, if we have real data set with these 
parameter values then that particular test will provide a better 
accuracy. Along with the shape, scale parameter also influences 
the measure AUC. Further, in second experiment, arbitrary 
values are fixed for HHD  ,, and by varying .D  This 
resulted in giving out another interesting point that along with 
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moderate level of discrepancy in shape values, scale parameters 
also has its influence in explaining the extent of accuracy. As 

D  attains a larger value, the AUC of GHROC tend to have 
better values than that of the first experiment. So this reveals 
that along with discrepancy in shape parameters of both 
populations, if scale parameter tends to explain better 
variability in the data then it gives rise to good phenomenon to 
talk about the exact performance of the test considered. 
However, there is a need to verify that how the accuracy of a 
test can be given when there is a discrepancy in shape 
parameters with a unit variability in both populations (i.e., 

1 DH  ). This is addressed by conducting the third 
experiment. Here, in the first part of this experiment the shape 
parameters are varied by taking unit variability and the second 
part is defined by considering unit values to all the scale and 
shape parameters of both populations. The results of the first 
part outline the observation that even though scale parameters 

are of unit value, the discrepancy in shape values tends to 
explain the hidden accuracy and as larger the discrepancy 
between the shape values of two populations better explanation 
about the accuracy of the test can be given. The second part 
reveals the finding that when all parameters are made to unit 
value, then two populations get overlapped giving rise to have 
AUC nearer to 0.5. Thus, from three experiments it is noticed 
that shape parameter has its major influence in explaining better 
accuracy of a test than observed with scale parameter alone. 
However, scale parameter also has its role in explaining the 
accuracy and it should not be neglected. The proposed 
methodology overcomes the limitation of the work proposed by 
Balaswamy et. al.8, where they have attempted to explain the 
accuracy of the test by taking into the account of scale 
parameters of two populations only. The entire experimentation 
is graphically visualized in figure-1, by depicting all sorts of 
scale and shape parameter combinations. 

 
Table-1 

AUC and its Confidence Intervals for various combinations of scale and shape parameters at different sample sizes 

Experiment Parameter Values Sample Size 
50 100 200 300 500 

I 
1H  

5.1D
6.0H  

8.0D  
0.6464 

(0.5422, 
0.7506) 

0.6017 
(0.5122, 
0.6912) 

0.6025 
(0.5492, 
0.6559) 

0.5796 
(0.5340, 
0.6253) 

0.6104 
(0.5791, 
0.6418) 

1D  
0.6406 

(0.5341, 
0.7471) 

0.6383 
(0.5604, 
0.7161) 

0.6366 
(0.5884, 
0.6848) 

0.6649 
(0.6284, 
0.7013 

0.6367 
(0.6005, 
0.6729) 

5.1D  
0.7641 

(0.6695, 
0.8587) 

0.7387 
(0.6639, 
0.8135) 

0.7332 
(0.6866, 
0.7799) 

0.7255 
(0.6875, 
0.7636) 

0.7323 
(0.7065, 
0.7581) 

II 
1H  

7.0H
5.2D  

5.1D  
 

0.8163 
(0.7339, 
0.8986) 

0.8115 
(0.7472, 
0.8758) 

0.8433 
(0.8065, 
0.8800) 

0.8445 
(0.8194, 
0.8696) 

0.8333 
(0.8103, 
0.8563) 

25.2D  
 

0.8876 
(0.8345, 
0.9408) 

0.8843 
(0.8444, 
0.9243) 

0.9066 
(0.8837, 
0.9295) 

0.9008 
(0.8803, 
0.9213) 

0.9011 
(0.8872, 
0.9150) 

5.3D  
 

0.936 
(0.9120, 
0.9599) 

0.944 
(0.9282, 
0.9598) 

0.9412 
(0.9302, 
0.9522) 

0.9342 
(0.9221, 
0.9463) 

0.9331 
(0.9241, 
0.9422) 

III 
1
 DH 

 

5.1H  
2D  

0.7034 
(0.6220, 
0.7847) 

0.6935 
(0.6275, 
0.7595) 

0.6575 
(0.6067, 
0.7084) 

0.6912 
(0.6564, 
0.7260) 

0.6808 
(0.6534, 
0.7082) 

17.2H
5.3D  

0.8243 
(0.7418, 
0.9069) 

0.8402 
(0.7927, 
0.8876) 

0.8269 
(0.7866, 
0.8673) 

0.8189 
(0.7881, 
0.8498) 

0.8247 
(0.8014, 
0.8480) 

1 DH 
 

0.5109 
(0.3983, 
0.6235) 

0.4957 
(0.4213, 
0.5700) 

0.483 
(0.4255, 
0.5405) 

0.5203 
(0.4726, 
0.5679) 

0.5294 
(0.4911, 
0.5676) 
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Figure-1a: Effect of Shape Parameter on 
shaping the GHROC Curve 

Figure-1b: Effect of Scale Parameter on 
shaping the GHROC Curve 

Figure-1 
GHROC Curves at various combinations of scale and shape parameters of both normal and abnormal populations 

 
Apart from explaining the importance and the influence of the 
scale and shape parameters in ROC context, it is essential to 
construct the confidence intervals for the measures of ROC 
Curve. This attempt is to illustrate the changing behavior of the 
estimates of the proposed ROC Curve. In statistical literature, 
the theory of interval estimation has gained its importance over 
point estimation because it reveals the true information of the 
estimate within the potential uncertainties. Hence, it is very 
important to address the position of the true estimate in the 
presence of sample size within the range of potential 
uncertainties. The  %1100   confidence intervals are 
constructed for all the combinations which are defined as three 
different experiments. 
 
Two salient features are explained from the obtained results. 
First, the perception about the impact of sample size on the 
width of the confidence intervals and second, the graphical 
visualization of the true estimates of GHROC Curve along with 
its confidence intervals. With respect to the first point, it is 
evident that the sample size effect can be witnessed in terms of 
the width of the confidence interval. From this, it is noticed that 
the true estimate is independent from the effect of sample size 
and its corresponding confidence interval possesses a 
narrowing down phenomenon. This suggests that as larger the 
sample size, smaller is the width of the confidence interval. 

These simulation studies points out the information that 
irrespective of the sample size and width of the confidence 
interval, the information about the true estimate of the ROC 
Curve lie within the potential uncertainties. Even though this is 
a generally observed phenomenon but the fact to be noticed is 
that the variability in the populations will get diminished as the 
sample size takes a larger number, giving rise to a shortened 
confidence interval. 
 
Further, the confidence intervals are drawn for the measures 
sensitivity and specificity and are graphically visualized in 
figure-2. This means that the sensitivity can be obtained at a 
particular value of specificity and vice versa from these 
confidence intervals. 
 
Figure-2 clearly explains the confidence intervals for GHROC 
Curve at various combinations of scale and shape parameters of 
both populations at a particular sample size. Along with this the 
lower and upper confidence intervals explain the range of false 
positive rates and true positive rates. Further, the optimal 
threshold is also depicted in figure-2 along with the pair (FPR, 
TPR) obtained at that particular optimal threshold which helps 
in classifying the subjects/individuals into one of the two 
populations with better accuracy. 
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Figure-2 

The Confidence Intervals for GHROC Curve at various combinations of scale and shape parameters of both populations at 
a particular sample size 
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Conclusions 
The present paper is focused on addressing the practical issue 
where the populations with and without condition under lie two 
different distributions which are of skewed in nature. Further, 
confidence intervals expressions are derived for the measures of 
the proposed ROC Curve. The main objective of the paper is to 
show the importance of shape parameter in explaining the 
extent of better accuracy of a test. Simulation studies are 
conducted to demonstrate the influence of the shape parameter 
along with the presence of scale parameter. However, in 
statistical theory, the conclusions cannot be drawn based on the 
true estimates of the curve, hence; there is a need to provide the 
potential uncertainties usually referred as confidence intervals 
for the measures of the curve, which helps in illustrating the 
tendency of the true estimate within the intervals. The entire 
exercise is done using three experiments and the effect of 
sample size is also noted. Further, it is observed that the width 
of the confidence interval is affected by the size of the sample 
in turn providing shortened confidence intervals as sample size 
is considered to be large. Moreover from the proposed 
methodology it is feasible to identify the sensitivity at a specific 
false positive rate and vice versa. 
 
Appendix I: Properties of GHROC Curve 
Property 1: Generalized Hybrid ROC Curve is 
monotonically increasing 
Proof: Let us consider two false positive values 21 PandP  
such that   1

21 andPP  be a strictly increasing function.  

Since 21 PP  which implies that 
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Hence, the Generalized Hybrid ROC (model) Curve is 
monotonically increasing. 
 
Property 2: Slope of the Generalized Hybrid ROC Curve 
equals the likelihood ratio and is positive. 

Proof: The derivative of ROC curve at a given pair of 
coordinates equals the likelihood ratio. Let us parameterize x 
and y in terms of ‘t’ and the derivative can be written as 
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tg

dt
dx

dt
dy

dx
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  

The derivatives of the cumulative distribution functions F(t) 
and G(t) are the probability distribution functions f(t) and g(t). 
Therefore the derivative of the Generalized Hybrid ROC Curve 
is 
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On simplifying the above equation, we have 
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which is the ratio of the distribution of abnormal scores to 
normal scores of the two probability densities at the value of ‘t’ 
and is positive. This is referred as the likelihood ratio of 
Generalized Hybrid ROC Curve. 
 
Property 3: The Generalized Hybrid ROC Curve is 
invariant under strictly increasing transformation. 
Proof: Let ‘S’ denote the set of scores with s and  h  is 
strictly increasing function. Let ,, baandSba  then by using 
strictly increasing function, we can write    .bhah   
The transformed random variables U and V from the respective 
normal and abnormal classes are 
             thVhPtVPthUhPtUP  &  

Let us consider the points     tytx ** ,  on the ROC Curve for 
the transformed scores 

               txtUPthUhPHthUhPtx  11|*

               tytVPthVhPDthVhPty  11|*  
Thus the Generalized Hybrid ROC Curve is invariant to 
transformation. 
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