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Abstract 

This paper will put an insight into an application to certain products containing the H - Function in boundary value problems. 

The results established in this paper are general in nature and hence encompass several cases of interest. 
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Introduction 

The H - Function is defined and represented in the following 

manner
1
. 
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The nature of contour L, sufficient conditions �f convergence 

of defining integral (1) and the behavior and other details about 

the H - Function can be seen in paper
1-5

 

 

The following formulas will be required in our investigation: 
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Main Result 

Theorem: Prove that
1
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Proof of the Theorem: To obtain the result (3) we first express 

H  function occurring on the L.H.S. of equation (3) in terms of 

contour integral using equation (1) and Interchanging the order 

of integration and summation then we apply the formula (2) and 

interpret the resulting contour integral as H  function we arrive 

at the right hand side of (3) after a little simplification. 

 

A Boundary Value Problem 

We consider a problem on heat conduction in a square plate 

under certain boundary conditions. If a square plate has its 

faces and its edges x = 0 and x = π (0<y<π) insulated. Its edges 

y = 0 and y = π (0<y<π) are kept at tem 

 

Peratures zero and f(x) respectively, then its steady temperature 

u(x,y) is given by Churchill
6
. 
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Now, we shall consider the problem of determining
( , )u x y
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We shall consider the problem of determining ( , )u x y , where 
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Solution of the problem 

Combining (6) and (7) and making the use of the integral (3), 

we derive 
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Putting the value of n
a

 from (7) in (4), we get the following 

required solution of the problem 
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Provided the condition stated with (3) are satisfied. 

 

Conclusion  

It may be pointed out here that the H  function is very general 

in nature and a fruitful nature of H  has its particular cases a 

number of important functions can also be obtained but we do 

not record them here.  
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