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Abstract

This paper will put an insight into an application to certain products containing the H - Function in boundary value problems.
The results established in this paper are general in nature and hence encompass several cases of interest.
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Proof of the Theorem: To obtain the result (3) we first express
The nature of contour L, sufficient conditions of convergence

! . H functi ing on the L.H.S. of equati in terms of
of defining integral (1) and the behavior and other details about H function occurring on the S- of equation (3) in terms o

contour integral using equation (1) and Interchanging the order

the H - Function can be seen in paper'” of integration and summation then we apply the formula (2) and
) ) o ) o interpret the resulting contour integral as H function we arrive
The following formulas will be required in our investigation: at the right hand side of (3) after a little simplification.
nw r
T o Feos— s A Boundary Value Problem
[ (sinx)” " cos nxdx = )
0 p-1_ B+n+l p—n+l We consider a problem on heat conduction in a square plate
27 I X ) : i :
2 2 under certain boundary conditions. If a square plate has its
faces and its edges x = 0 and x = © (O<y<mn) insulated. Its edges
Main Result y =0 and y = n (O<y<m) are kept at tem
V4 -1 Peratures zero and f(x) respectively, then its steady temperature
Theorem: Prove that [ (sin x) COS nx u(x,y) is given by Churchill®.
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Now, we shall consider the problem of determining u(x,y) ,
where

sinh xy
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u(x,y) = —0y+ 2 a, coS nx “4)
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n=1 sinh nx
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ay, =— | f(x)cos nxdx
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n=0,1,2.....
We shall consider the problem of determining u(x, y) , where
u(x,0) = f(x) = (sin x)”""
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Solution of the problem

Combining (6) and (7) and making the use of the integral (3),
we derive
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Putting the value of a, from (7) in (4), we get the following
required solution of the problem
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Provided the condition stated with (3) are satlsfled.

Conclusion

It may be pointed out here that the ﬁ function is very general

in nature and a fruitful nature of H has its particular cases a
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number of important functions can also be obtained but we do
not record them here.
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