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Abstract

An attempt is made in this article to obtain the numerical solution of singularly perturbed two point boundary value
problems. To achieve this singular perturbation problem is reduced to first order differential equation by taking a
small deviating argument. The Simpson’s 3/8 rule is employed to get the equation in 'y (x;). Hermite interpolation is
used to obtain the value of y at the intermediate points of the boundary, finally yielding to a tridiagonal system of
equations. The discrete invariant imbedding method is used to obtain the solution of system of equations. four linear
singular perturbation problems of which two are with constant coefficients and two are with variable coefficients are
solved to test the applicability and competence of the proposed method. The numerical results obtained by the
proposed method are compared with the exact solution and also with the results obtained using Simpson’s 1/3 rule. It
is observed that the numerical results are very near to the exact solution.

Keywords: Singular perturbation problem, boundary layer, deviating argument, discrete invariant imbedding method.

Introduction

A problem is known to be perturbed problem in which the
highest order derivative term is multiplied by a small
parameter and the parameter is known as the perturbation
parameter. Perturbation problems arise in a variety of fields

in applied science, aerodynamics, elasticity quantum
mechanics, engineering, and chemical reactor theory.
Boundary layer problems; convective heat transport

problems and the modeling of viscous flow problems with
large Reynolds number are some of examples of perturbation
problems. Number of researchers has employed various
methods for solving singular perturbation problems. A
detailed analysis on singular perturbation problems has been
given by Bellman', Bender and Orsag’, O’Malley’,
Eckhanus4, Keverkian and Coles, Nayfen6, Van Dyke7,
Bush®, Holmes’, Murdock'’. Niijima'' has given uniformly
second order accurate difference scheme for reaction-
diffusion equations, where as Miller'” has given sufficient
condition for the uniform first order convergence to a
general three-point difference scheme. Spline approximation
method has been investigated by Kadalbajoo and K.C.
Patidar" to solve self-adjoint singular perturbation problems
on non-uniform grids. Theory and discussions on
perturbation problems has been presented by Elsgolts'* and
Reddy"”. Reddy and Chakravarthy'® constructed an
exponentially fitted finite difference method for obtaining
the solution of these problems. Kadalbajoo and Vikas
gupta'” presented a brief survey on numerical methods to
solve singularly perturbed problems. Rashidinia et al.'® used
spline in compression to develop the numerical methods for
singularly perturbed two-point boundary value problem and
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shown that the accuracy of proposed methods are of second
order and fourth order. These methods are applicable for
both singular and non-singular problems. Reddy' has
employed numerical integration method to solve
perturbation problems.

The objective of the work carried out in this paper is about
obtaining numerical solution of singular perturbation
problems. The singular perturbation problem is reduced to a
differential equation of first order with a small deviating
argument. The Simpson’s 3/8 rule is employed to get the
equation in y (xi). Hermite interpolation is used to obtain the
value of y at the intermediate points of the boundary, finally
yielding to a tridiagonal system of equations. The discrete
invariant imbedding method is implemented to solve the
system of equations. Numerical examples are given to show
the applicability of our method. The results obtained by
using this method are compared with the results obtained
using Simpson’s 1/3 rule. It is observed that the values
obtained by this method are near to the exact solution in
comparison with the solution obtained by employing
Simpson’s 1/3 rule.

Description of the Method

Left end boundary layer problem: We consider a class of
singular perturbation problem

ey (x)+a(x)y' (x)+b(x)y(x)= f(x); xel[0,1] (1)
y(0)=a and y(1)=p 2)
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Here € is a small positive parameter (O<e<<1) anda, P are
given constants. We assume that a(x), b(x), f(x) to be

sufficiently continuously differentiable functions in [0, 1]. In
addition we assume that for some positive constant M,
b(x) <0 and a(x)=2M >0 on [0, 1]. The assumptions
entail that the singular perturbation problem (1) - (2) has a
unique solution Y(x), which exhibits a boundary layer of width

0(€) at x = 0 for small value of € .

Taking the expansion in the neighborhood of a point by
Taylor’s series. we have

Y(x=-90)=y(x)-30y"(x), 3)
1
y'(x) = g(y'm ~ ¥y (x-8)) (4)

Here § is a small positive deviating argument (0 < & <<1).
Substituting (4) in (1)

y' (%) =y (x=0) ,
€ ( 5 +a(x)y' (x) +b(x) y(x) = f(x)
Y (x)=p)y' (x = 8)+ q(x)y(x) + r(x) %)
where
€ —Ob(x) S f(x)
p)=—"—  qx)="""— r=—""T"- (6
€ +oa(x) € +oa(x) € +da(x)
For 0<x<1 We take the mesh size h ie., h =i and
: N
xi =ih, i=0,1,.... N by dividing [0, 1] into N equal parts.
Now integrating (5) in [x;, x; g1 G=1, 2,...N —1) we get

z+1
(p(x) y' (x = 8) + q(x)y(x) + r(x))dx
l

Yiv1 —Yi T

= i+1y("i+l’5) piyix; ’5)+ I ( P Y(x=8) +g(x)y(x) +r(x))dx 0

X
1

To evaluate the integral approximately we use Simpson’s 3/8
rule.

Yiv1 = Vi = Pi+1y(xi+1 -6)-py(y; - 8)

-9) +C](xi)}’(xi)+ r(xl-)

+{— P[Z" : XZHJ {2’%‘ J;xi+l _ 5J N {2" J;me y[z" *:%1}
J{_ P[" +§xz+1] {x +§"z+1 5] {" f"m] { +§"i+1J .
= Py Wiy = 8)+ gl Doy )+ gy )l ®)

To get the solution of (1)-(2) we need to approximate some of
the terms of (8). By Taylor’s series we have

h
+ g [— P’ (xl- )y(xl-
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Yi— Y-
y(x; = 8) = y(x;) = &' (x;) =y _‘{lTllj
) o
y(x; = 0) = (I_Zin +; Yiq )
) o
(xl+1 5)_(1_;))7#1 +;yl (10)
and
Bx + x, 0 @ 0
i i+1 0 .
- d= X - d¥=
y 3 : y w1y 95
d
Vi)™ it 57 (11)
X: +2x )
i+1 _
y( 3 —5J—yl+/ Vi (12)
From hermite interpolation we have
20y;  TYiy | 2k
S D 2R (13)
yi+% 21 21 27 byioyil
7Y 20yl+1 2h
=L -2 14)
yi+% 27 27 [ y’“]

Putting x= x,

1 and X = X; in (5)

Y (xi+1)= it = By (xi+1 - 5)+ G Yiel T (15

yi =By (= 8)+ 43+, (16

Also ( ) ( )

. Wag =6l —9) 1 ) 25

y(xi+1_5):”=h[(l—hjyl'+1 (h ljy —hy,—l}(”)
. x. 1 —0)— R

yl(i_é-):y( i+l ) y(z )

(18)

1 ) 26 )
e L B P A

From (15) and (16)
(ZPy( ~3)+2q yz+2r) ~Eygy (s Xy -3)- ~Ge1Vi i

Le-r )l s 2w\ S
_\ i e 0 e _ _ 19
= [[1 h)yi+1 +( . 1)%‘ i T2 i 2 (19

2 VT
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' ' (Pi_ZPi+1) ) 26 5
Vim2ier = (| et T i i

43 =244 T 2
Substituting (19) in (13) and then in (11) we get
it _g) 20 T 24\ (2P 1_5}“{2‘5 —ljyi o,
3 27 271 27 h nlt h nt
2h ) )
F B T i Vi F 20 i T Vi ]
(21)

Substituting (20) in (14) and then (12) we get

x: +2x. 7y. 20y, 2h
y[z—m_5J=_z+_z+1+

3 27 27 27

Bm2P (0 (28 ), 8. .2
n Y Yi+l Y Yi hyi—l 27

[+Qiyi_2q1‘+1yi+1+”i_2”i+1]—%ym +%yi 22

Now substituting (9), (10), (21) and (22) in (8)

5 5 s\ & |
Yirt 7V = Fea |\ 1o e i (TR 1 it i

h , o ) ,
+—=|=P||1-—— |y, +—y., |tqy, +1,=3 P —
8 1|:[ hjyl hyt—1:| q;y; T ( i+% qi-%—%

27 27 27!

{my,- S, 2 0p

) 26 5 |
P, )|:(1_hjy,'+1 +[h_1)yi _ﬁyi—l_

pdh L 2R pdh, 2h | ap N +3r
27‘1,‘yi 27qi+1yi+] 57 1T g im Y hyi+l hyi i

_3(Pi+%_qi+%j

7y, 20y, 2 ) 26 )

——+——+— (P =2P )| 1-—— |y +| — 1|y, =,

|:27 27 27(1 1+1)|:( ]’l yl+1 h y1 hyzfl
2h

P J2, -3P (—5 +§ ]+3r
27%)’,' 27Qi+lyi+l 271 el 2 hyH—l hyi 2,

, ) )
_Pi+l|:(1_;)yi+l +Zyi:|+Qi+1yi+l +ri+1:|

Rearranging the terms, we get the following 3 term recurrence
relation

Ay, ., - By, +C,y.., =D,
forj =1,2 N —1.Where

(23)

(24)
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B (B —a,, Ea-20)+ (B —a, )R, - E)
&\ h (.

B —P'1-=|+= .-{P_ -q, j

( hj g i g\ Ny Ty

51 2 o] oh(

24P -P, )21 |+2q |-2(P,, -

{2+4( ’ ‘“)(h j+2q‘} 9(”% QH%)

7+1(P;—2P[+1)(25_1\J+hq,' _35([)-'1 +P-v2 )_Pmé
8 4 i+ i+7 8

—1-p_[1-9 ﬁ(' - )Z Yop_p Y1_9) "
Ci 1 B+1(1 41)4-9 R+% q[Jr% |:8+4(ZR Rﬂ)l h 4Q[+1

h( 5.1 o) h 30( . :
+—=| P, - —+—(\P-2P, ) 1-—— |-=q,, |——| P, +P
9( [+% qH ’;)|:2 4( i 1+1)( ]’lj 2qz+1:| 8 ( [Jr% [+%)

2

h .
D, _g 5 +’}+1)+§(}:‘+% +C+%)_%(Pi+% _qi+%)(2r; —}’;-+1)
h’ ~
_E(PH% _qH%)(”i -2r,)

From equation (24) we get a system of equations with (N+1)

(25)

unknowns Y,to ¥, Solving these equations by using the given

boundary conditions (2) we obtain the solution (), to ¥, ) of

the boundary value problem (1)-(2).

Right end boundary layer problems: Consider a singular
perturbation problem

1

e y"(x)+alx)y (x)+b(x)y(x) = r(x)kxe o] (26)
With y(0)=a & y(1)= 5 27
We suppose that a(x), b(x), f(x) to be sufficiently

continuously differentiable functions in [0, 1]. In addition we

assume that for some negative constant M, a(x)SM <0in

[0,1] .This assumptions entail that the boundary layer will be in

the neighborhood of x =1. By Taylors series expansion we

have

y(x+d)=y (x)+ oy (x)

y e+ )= y(x)
1

(28)

= y(x)=

Where ¢ is a small positive deviating argument (0< ¢ <<1).
Substituting in (26) and rearranging

'

v (x) = P(x)y (x+ )+ q(X)y(sz; r(x) ((2)9>
- - dlx Flx
where )= o= e ae
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Dividing the interval [0,1] into N equal parts with mesh size

1
h; ie h= N,xi =ih,i=0,1...N, integrating (29) in

[xi—l’xi] (i=12..N-1)-
We get

v )=y, )= I(P(x)y (x+8)+ g (x)y )+ r ()

= P('xi ))’(xi +6)- P('xi—l )y('xi—l + 5)
b [P G+ 8)+ gl () + r(o)kix

i-1

€1V

We use Simpson’s % rule for evaluating the integral

approximately Yi— Vi = P[y(‘xi + é‘)_ P[—ly(xi—l + 5)

h .
+ 8_[_ Pi—ly(xi—l + 5)"' g1 Yo T iy

2x,_, +x. 2x,, +x, 2x._, +x
+3 _Pl i—1 i i—1 +é‘ + i—1 i +
{ ( 3 jy ( 3 j G ( 3 j A

7/ [ X, +2x; +5J+q / [ ,1+2x]

+ri—%:|_ Pily(xi +5)+ q:Yi +ri] (32)
By Taylors series we have
' 0 0
y(xifl+5)zyifl+®i71 :(1_;])},'—14-;)}1' 33)
0 0
+O0)=|1-= |y, +—y, (34)
y(x; +8) ( h)y, Vi

and

2x,_, +x, o o
y( 3 +§J y(xl_f% +5\J yi_% + A Yi h i 39
X 2% o) ( j - S, 9., (36
y[ 3 +5)_yx"%+5 eyt e 00

From hermite interpolation

1 2h . .
- . T+ 220y — ! 37

y(xi%) - [20y,, + 7y,]+ [ZyH vi

1 .
y(x,-,%)= > [7y,, +20y,]+ [y,l— ] (38)
Substituting x =X, and X = X; in (28) we get
y;_1 = [)i—ly'(xi—l + 5)"' qinYia T, (39)
yi =Py (o +8)+q,y +r, (40)
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Also
e
3 +68)= yx, +8)-y(x, +9) [ - I—Z] ,,} (42)

From (39) and (40) we can evaluate the values of 2 yl - y;,
andyl'__l— Zy;_.

Substituting these values in (35) we get

2x, + X, 2n[ (2P, -P)( &S 28
i S P —20,+7,+—# +1-=2
y( 3 j [ yl*l yl] 27|: h [hylﬂ ( hj

5 s
—(l—jyujﬂ% Vi — 4y T2, —r]+ﬁ -—;y,l (43)

L+1 (1 26‘)
h

(44)

Substituting these values in (36) we get

X, +2x, 2u[ (P, -2P)( &
5= 7 20y, [+ —| L —

v, - l—iy +q, Y —2q,y,+T —2r]+éy — 7 Yia
i h, i-1 -1 -1 i) i-1 h h

Substituting (33), (34), (43) and (44) in (32)

o ) ) o
Vi~ Yia = R((l—hjyi +hy,-+1j— 3_1[(1—hjy,-_1 +hyl}

+*_P11[(_a/)y11+a/y ]+qtlyll+r]

+3{( /+q /)[(ZOy,._217+7y,.)+ZKZR_Z—EJB%H
I h

anys,

+(1—ijyi —(hijy“}'m ~2g,y,+1,—2r]

Fob bt

Rearranging the terms of (45) we get we get the following 3
term recurrence relation

Ay, ,—-By +C,y_ =D;;i=12..N -1

(46)

where



Research Journal of Mathematical and Statistical Sciences

Vol. 2(9), 9-19, September (2014)

o) h o) h hi..
A=—1+p [1-2 |+ 2p [1-2 -2y + 2 (P, -
i + Il[ hj+8 ll[ I’lj 8q171+18( i—% ql—%)

_S—M(l—£)+hqi_l}+ L [

2 -4,

%
B,.=—1+P(1—éj—P,._lé—éPil h[
ho 8 7%

— hqg .

i

/]
o)
K /J
4]
7o)

”""} L
-22[e, -

h (. &) h 6 &
——P|1-——|+—¢qg.C.=—P.—+—2P_, -P.
8 1( h] Sql 1 lh 36( -1 l{ l—y —y]

5 1 Sty oy 3h
+?6( -2F P/]/ ‘];_}é)‘*'gﬁ Di_8(ri7]+ri)+8(1_y L_/)

_3}5[(1’,.'% 4, )(244 -, )+(F;', =y, )(r,-fl -2, )} (47)

From equation (46) we get a system of equations with (N+1)
unknowns Y,to Y . The boundary conditions (27) with (N-1)
Solving the system of

Y1)

equations give (N+1) equations.
equations we get the solution (y, y,....

Numerical Results

Three linear singular perturbation problems with left-end
boundary layer and one linear problem with right-end boundary
layer, of which two are with constant coefficients and two are
with variable coefficients are considered.

Examplel: From fluid dynamics for fluid of small viscosity
(Reinhardt®, example 2) we consider the non-homogeneous
singular perturbation problem

' y'(x) =1+2x; x€ [O,l]

ey (x)+

with y(0)=0and y(1)=1
The exact solution of non-homogeneous singular perturbation
problem is

(2e —1)(1 - e’%)

=)

-3 —4
For €=10 and €=10"" the numerical results are
specified in the tables land 2 for different values of &

y(x)=x(x+1-2€)+
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0<d<<1

Table-1
Numerical outcome of example 1 for £¢=0.001, h=0.1

respectively. The

y(x)
X Exact solution
6=0.001 6=0.005
0.1 -0.8684178 -0.8684165 -0.8881992
0.2 -0.7582041 -0.7582028 -0.7583992
0.3 -0.6085981 -0.6085968 -60859930
0.4 -0.4387999 -0.4387989 -0.4387993
0.5 -0.249 -0.2489990 -0.2489994
0.6 -0.0392 -0.0391992 -0.0391995
0.7 0.1906 0.19060062 0.1906004
0.8 0.4404 0.44040043 0.4404003
0.9 0.7102 0.71020022 0.7102002
Table-2
Numerical outcome of example 1 for £=0.0001, h=0.1
y(x)
X Exact solution
6=0.0001 6=0.0005
0.1 -0.8878222 -0.88782 -0.8898192
0.2 -0.759838 -0.75984 -0.7598393
0.3 -0.60986 -0.60986 -0.6098593
0.4 -0.43988 -0.43988 -0.4398794
0.5 -0.2499 -0.24990 -0.2498994
0.6 -0.03992 -0.03992 -0.0399195
0.7 0.19006 0.19006 0.1900604
0.8 0.44004 0.44004 0.4400403
0.9 0.71002 0.71002 0.7100202
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0.8 ~
a
0.6
0.4 - "
0.2 - l
£1E-16 — delta =0.001
£ ,,0 01 0203 04 0506 07 08 09 1 " dela=0.005
s ’ Exact solution
0.4 - i
-0.6 =
0.8 - e
»
-1 -
x values
Figure-1
Comparison of numerical results with €=0.001
0.8 -
0.6 -
0.4 A g
0.2 A =
E 0 T T T T T pe T T T 1 delta = 0.0001
é 02 0 01 02 03 04 0;5 06 07 08 09 1 s delta=0.0005
04 - . Exact solution
-0.6 - =
-0.8 -~ -
-1 -
x values
Figure-2

Comparison of numerical results with £€=0.0001

Example2: From Bender and Orszag g E(page 480, problem

9.17 withar = 0 )
we consider the homogeneous singular perturbation problem

ey (x)+y(x)-yx)=0; xef01]
With y(0)=1and y(1)=1

The exact solution of homogeneous singular perturbation
problem is

International Science Congress Association

- e o]

e —e)
—1++1+4€ " _—1-+1+4e
— — my=—
2e

2€

where m; =

For €=10"° and €=10"", the results are specified in the
table 3 and table 4 respectively. The comparison is shown in
figures 3 and 4.
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Table-3 Table-4
Numerical outcome of example 2 for £¢=0.001, h=0.01 Numerical outcome of example 2 for £€=0.0001, h=0.01
y(x) , y(x) .
X 5-0.001 5-0.005 Exact solution X 5-0.0001 5-0.0003 exact solution
0 1 1 1 0 1 1 1
0.02 0.38084 0.380839 0.375678 0.02 0.375423 0.375423 0.37534787
0.04 0.383299 0.383299 0.383260 0.04 0.38294382 0.38294382 0.38292964
0.06 0.390992 0.390991 0.390994 0.06 0.39067871 0.39067871 0.39066455
0.08 0.398882 0.398882 0.398885 0.08 0.39856984 0.39856984 0.3985557
0.1 0.406932 0.406932 0.406935 0.10 0.40662035 0.40662036 0.40660625
0.2 0.449685 0.449685 0.449688 0.20 0.44937876 0.44937877 0.4493649
0.3 0.496929 0.496929 0.496932 0.30 0.49663346 0.49663346 0.49662006
0.4 0.549138 0.549137 0.549140 0.40 0.54885726 0.54885726 0.54884456
0.5 0.606831 0.606831 0.606833 0.50 0.60657267 0.60657268 0.60656098
0.6 0.670585 0.670585 0.670588 0.60 0.67035719 0.67035719 0.67034685
0.7 0.741038 0.741038 0.741040 0.70 0.74084901 0.74084901 0.74084044
0.8 0.818893 0.818893 0.818894 0.80 0.81875344 0.81875344 0.81874712
0.9 0.904927 0.904927 0.904928 0.90 0.90484995 0.90484995 0.90484646
1 1 1 1 1.00 1 1 1
0.95
0.85
0.75
-E delta = 0.001
5 0.65
2 s —=—delta=0.005
0.55 . Exact solution
0.45 =
0.35 i . T T T . . T
0.02 0.12 0.22 0.32 042 052 0.62 0.82 0.92
x values
Figure-3

Comparison of numerical results with £€=0.001
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Example 3: Consider the singular perturbation problem with
variable coefficients from Kevorkian® (page 33, with o= _%)

ey (x)+ (1 - %)y‘(x)— (%)y(x)z 0,0< x<1,

y(0)=0.y(1)=1

We have taken consistently valid approximation (Nayten®, page
148) as per the exact solution that is

Res. J. Mathematical and Statistical Sci.

()= Gyt (1 )04

The results obtained by our method and by Simpson’s 1/3 rule
for e= 10 * and for e= 10 ~* are specified in the tables 5
and 6 respectively, and the comparison is shown in figures 5
and 6. The comparison of errors in both cases is given in the
tables 7 and 8 respectively.

0.95 -+
0.85 -~
0.75 -+ -
=
S
'g 0.65 - delta = 0.0001
% : = delta=0.0005
0.55 - = Exact solution
0.45 -+ s
0.35 T T T T T T T T T
0.02 0.12 0.22 0.32 042 052 062 0.72 0.82 0.92
x values
Figure-4
Comparison of numerical results with £€=0.0001
0.95 -+
09 - p
0.85 - /
08 . // .
5 oo | & 0.001 by 3/8
-§ /37 e 0.001 by 1/3
® 977 Z 0.005 by 3/8
0.65 -
= 0.005 by 1/3
0.6 - = .
: & Exact solution
0.55 -
0.5 T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1
x values
Figure-5

Comparison of numerical results with £€=0.001
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Comparison of numerical results with £€=0.0001

\

Table-5
Numerical outcome of example 3 for £=0.001, h=0.1
y(x)
X by 3/8 rule by 1/3 rule by 3/8 rule by 1/3 rule exact solution
5=0.001 6=0.001 6=0.005 6=0.005
0 1 1 1 1 1
0.1 0.527732 0.526295 0.530153 0.529536 0.526316
0.2 0.551594 0.546451 0.554211 0.553544 0.555556
0.3 0.583946 0.580445 0.586717 0.58601 0.588235
0.4 0.620398 0.618668 0.62334 0.622589 0.625
0.5 0.661701 0.659856 0.664837 0.664036 0.666667
0.6 0.708892 0.706915 0.712249 0.711391 0.714286
0.7 0.763324 0.761195 0.766937 0.766012 0.769231
0.8 0.826802 0.824496 0.830714 0.829712 0.833333
0.9 0.901782 0.899267 0.906047 0.904954 0.909091
1 1 1 1 1 1
Table-6
Numerical outcome of example 3 for £=0.0001, h=0.1
y(x)
X by 3/8 rule by 1/3 rule by 3/8 rule by 1/3 rule exact solution
6=0.0001 6=0.0001 6=0.0005 6=0.0005
0 1 1 1 1 1
0.1 0.522382 0.520901 0.524902 0.524256 0.526316
0.2 0.55085 0.549284 0.553515 0.552831 0.555556
0.3 0.583253 0.581595 0.586072 0.585349 0.588235
0.4 0.619707 0.617945 0.622701 0.621932 0.625
0.5 0.661022 0.659142 0.664212 0.663392 0.666667
0.6 0.708238 0.706225 0.711654 0.710776 0.714286
0.7 0.76272 0.760551 0.766395 0.765449 0.769231
0.8 0.826281 0.823932 0.83026 0.829235 0.833333
0.9 0.9014 0.898837 0.905736 0.904618 0.909091
1 1 1 1 1 1
0.9
0.85
0.8
0.0001 by 3/8
c 075 )
% o s ——0.0001 by 1/3
§ . 0.0005 by 3/8
0.65 =
. 0.0005 by 1/3
0.6 )
- -~ Exact solution
0.55 4
0.5 T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x values
Figure-6
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Table-7
Comparison of absolute errors by Simpson’s 3/8 rule and by Simpson’s 1/3 rule for example 3 with £=0.001 and h=0.1
Error
X by 3/8 rule by 1/3 rule by 3/8 rule by 1/3 rule
6=0.001 6=0.001 6=0.005 6=0.005
0 0 0 0 0
0.1 0.001420 2.08E-05 0.003840 0.003220
0.2 0.003962 0.009105 0.001344 0.002012
0.3 0.004289 0.00779 0.001518 0.002225
04 0.004602 0.006332 0.00166 0.002411
0.5 0.004966 0.006811 0.001829 0.002631
0.6 0.005394 0.007371 0.002036 0.002895
0.7 0.005907 0.008036 0.002293 0.003218
0.8 0.006531 0.008837 0.00262 0.003622
0.9 0.007309 0.009824 0.003044 0.004137
1 0 0 0 0
Table-8
Comparison of absolute errors by Simpson’s 3/8 rule and by Simpson’s 1/3 rule for example 3 with £=0.0001 and h=0.1
Error
X by 3/8 rule by 1/3 rule by 3/8 rule by 1/3 rule
6=0.0001 6=0.0001 6=0.0005 6=0.0005
0 0 0 0 0
0.1 0.003934 0.005415 0.001414 0.002060
0.2 0.004706 0.006272 0.002041 0.002724
0.3 0.004982 0.006641 0.002163 0.002886
04 0.005293 0.007055 0.002299 0.003068
0.5 0.005645 0.007524 0.002454 0.003274
0.6 0.006047 0.008061 0.002631 0.00351
0.7 0.006511 0.008679 0.002836 0.003782
0.8 0.007052 0.009401 0.003074 0.004099
0.9 0.007691 0.010253 0.003355 0.004473
1 0 0 0 0
Exampled4. Consider the singular perturbation problem Table-9
cy" (x)— y (x) —0.xe [0’1] Numerical outcome of e);:zgple 4 for £=0.001, h=0.01
With y(0)=1and y(1)=0. X 5=0.002 5=0.005 exact
0.1 1 1 1
The exact solution of singular perturbation problem is 0.2 1 1 1
> 0.3 1 1 1
e -1 04 1 1 1
y ( x) =-—= 0.5 1 1 1
( A 1) 0.6 1 1 1
0.7 1 1 1
At x =1 this problem has a boundary layer. For €= 10" and 0.8 1 1 1
for e= 10 ™* the results are specified in the tables 9 and 10 0.9 ! ! 1
respectively. 0.92 ! ! 1
0.94 0.999999 0.999999 1
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Table-10
Numerical outcome for example 4 with €=0.0001, h=0.01

X y(x) exact

0=0.0002 0=0.0005
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.92

[N (YUY VY IV UG NI [FUNINY NI (U VN U
[N (YUY VY VY UG NI (U VI (U [N U
[N (YUY VN RSN U NN (U VNN (U VSN U

0.94

Conclusion

We consider four linear boundary value problems. Their
numerical solution and absolute errors are given at different
values of 0 by fixing the mesh size h. The approximate
solution and exact solutions at the grid points are summarized
in the tabular form. Further the approximate solution and exact
solution are shown graphically. It is observed that the
approximate solution is very near to the exact solution. From
the tables it is seen that the maximum absolute error is almost
same for the both values of €. It is also observed that the
method is more accurate for the problems with constant
coefficients when compared to the problems with variable
coefficients. It is also observed that the results obtained are
more or less same as the numerical solution obtained by
employing Simpson’s one third rule in the case of singular
perturbation problems with constant coefficients. For singular
perturbation problems with variable coefficients the results
obtained are more close to the exact solution rather than the
solution obtained by employing Simpson’s 1/3 rule.
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