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Abstract 

An attempt is made in this article to obtain the numerical solution of singularly perturbed two point boundary value 

problems. To achieve this singular perturbation problem is reduced to first order differential equation by taking a 

small deviating argument. The Simpson’s 3/8 rule is employed to get the equation in y (xi). Hermite interpolation is 

used to obtain the value of y at the intermediate points of the boundary, finally yielding to a tridiagonal system of 

equations. The discrete invariant imbedding method is used to obtain the solution of system of equations. four linear 

singular perturbation problems of which two are with constant coefficients and two are with variable coefficients are 

solved to test the applicability and competence of the proposed method. The numerical results obtained by the 

proposed method are compared with the exact solution and also with the results obtained using Simpson’s 1/3 rule. It 

is observed that the numerical results are very near to the exact solution. 

 

Keywords: Singular perturbation problem, boundary layer, deviating argument, discrete invariant imbedding method. 
 

Introduction 

A problem is known to be perturbed problem in which the 

highest order derivative term is multiplied by a small 

parameter and the parameter is known as the perturbation 

parameter. Perturbation problems arise in a variety of fields 

in applied science, aerodynamics, elasticity quantum 

mechanics, engineering, and chemical reactor theory. 

Boundary layer problems; convective heat transport 

problems and the modeling of viscous flow problems with 

large Reynolds number are some of examples of perturbation 

problems. Number of researchers has employed various 

methods for solving singular perturbation problems. A 

detailed analysis on singular perturbation problems has been 

given by Bellman
1
, Bender and Orsag

2
, O’Malley

3
, 

Eckhanus
4
, Keverkian and Cole

5
, Nayfen

6
, Van Dyke

7
, 

Bush
8
, Holmes

9
, Murdock

10
. Niijima

11
 has given uniformly 

second order accurate difference scheme for reaction-

diffusion equations, where as Miller
12 

has given sufficient 

condition for the uniform first order convergence to a 

general three-point difference scheme. Spline approximation 

method has been investigated by Kadalbajoo and K.C. 

Patidar
13

 to solve self-adjoint singular perturbation problems 

on non-uniform grids. Theory and discussions on 

perturbation problems has been presented by Elsgolts
14

 and 

Reddy
15

. Reddy and Chakravarthy
16

 constructed an 

exponentially fitted finite difference method for obtaining 

the solution of these problems. Kadalbajoo and Vikas 

gupta
17

 presented a brief survey on numerical methods to 

solve singularly perturbed problems. Rashidinia et al.
18

 used 

spline in compression to develop the numerical methods for 

singularly perturbed two-point boundary value problem and 

shown that the accuracy of proposed methods are of second 

order and fourth order. These methods are applicable for 

both singular and non-singular problems. Reddy
19

 has 

employed numerical integration method to solve 

perturbation problems. 

 

The objective of the work carried out in this paper is about 

obtaining numerical solution of singular perturbation 

problems. The singular perturbation problem is reduced to a 

differential equation of first order with a small deviating 

argument. The Simpson’s 3/8 rule is employed to get the 

equation in y (xi). Hermite interpolation is used to obtain the 

value of y at the intermediate points of the boundary, finally 

yielding to a tridiagonal system of equations. The discrete 

invariant imbedding method is implemented to solve the 

system of equations. Numerical examples are given to show 

the applicability of our method. The results obtained by 

using this method are compared with the results obtained 

using Simpson’s 1/3 rule. It is observed that the values 

obtained by this method are near to the exact solution in 

comparison with the solution obtained by employing 

Simpson’s 1/3 rule.  

 

Description of the Method 

Left end boundary layer problem: We consider a class of 

singular perturbation problem 

]1,0[);()()()(')()('' ∈=++∈ xxfxyxbxyxaxy            (1) 

βα == )1()0( yandy                (2) 

 



Research Journal of Mathematical and Statistical Sciences ___________________________________________ISSN 2320–6047 

Vol. 2(9), 9-19, September (2014)       Res. J. Mathematical and Statistical Sci. 

 International Science Congress Association          10 

Here ∈ is a small positive parameter (0<∈<<1) andα, β are 

given constants. We assume that )(),(),( xfxbxa  to be 

sufficiently continuously differentiable functions in [0, 1]. In 

addition we assume that for some positive constant M, 

0)(0)( >≥≤ Mxaandxb  on [0, 1]. The assumptions 

entail that the singular perturbation problem (1) - (2) has a 

unique solution )(xy , which exhibits a boundary layer of width 

)(∈o  at 0=x  for small value of∈ . 

 

Taking the expansion in the neighborhood of a point by 

Taylor’s series. we have 

)('')(')(' xyxyxy δδ −=− ,              (3) 

( ))(')('
1

)('' δ
δ

−−= xyxyxy                (4) 

Here δ is a small positive deviating argument )10( <<< δ .  

Substituting (4) in (1)  

)()()()(')(
)(')('

xfxyxbxyxa
xyxy

=++
−−

∈ 







δ

δ
 

)()()()(')()(' xrxyxqxyxpxy ++−= δ ,            (5) 

where 

)(

)(
)(

)(

)(
)(

)(
)(

xa

xf
xr

xa

xb
xq

xa
xp

δ

δ

δ

δ

δ +∈
=

+∈

−
=

+∈

∈
=

  

(6) 

 

For 1<≤xδ
. 

We take the mesh size h  i.e., 
N

h
1

=  and

Niihxi .........,1,0, ==  by dividing [0, 1] into N equal parts. 

Now integrating (5) in )1......,2,1(]1,[ −=+ Niixix
 
we get 

( )∫
+

++−=−+

1
)()()()(')(1

i
x

ix
dxxrxyxqxyxpiyiy δ  

( ) )(11 δδ −−−++= ixyip
i

xy
i

P + ( )∫
+

++−−
1

)()()()()('
i

x

ix
dxxrxyxqxyxp δ

(7) 

 

To evaluate the integral approximately we use Simpson’s 3/8
 

rule. 

( ) ( )δδ −−−++=−+ ixyiP
i

xy
i

Piy
i

y 111

[ )()()()()('
8

ixrixyixqixyixP
h

++−−+ δ  
















































 ++
+++++

+−++++
−+

3

12

3

12

3

12

3

12

3

12
'3

ixix
r

ixix
y

ixix
q

ixix
y

ixix
P δ  
















































 ++
+++++

+−++++
−+

3

12

3

12

3

12

3

12

3

12
'3

ixix
r

ixix
y

ixix
q

ixix
y

ixix
P δ  

( ) ( ) ( ) ( ) ( )]
11111' +++++−++− ixrixyixqixyixP δ            (8) 

 

To get the solution of (1)-(2) we need to approximate some of 

the terms of (8). By Taylor’s series we have 








 −−
−=−=−

h

iyiy

iyixyixyixy
1

)(')()( δδδ   

11)( −+−=− 







iy

h
iy

h
ixy

δδ
δ               (9) 

( ) iy
h

iy
h

ixy
δδ

δ ++−=−+ 







111            (10) 

and 

i i

i

x x
y y xd d+

+

æ ö+ æ ö÷ç ÷÷ çç - = - =÷÷ çç ÷ç÷ è ø÷çè ø

1

1
3

2

3

i ii
y y y

h h

d d
++

- +
1 1
3  

            (11) 

iy
h

i
y

hi
y

ixix
y

δδ
δ ++−

+
=−++









1

3
2

3

12
          (12) 

 

From hermite interpolation we have 

[ ]
1''2

27

2

27

17

27

20

3
1 +−+++=

+ i
yiy

hi
y

iy

i
y             (13) 

[ ]
1'2'

27

2

27

120

27

7

3
2 +−+++=

+ i
yiy

hi
y

iy

i
y            (14) 

 

Putting 
i

x x
+

=
1  

and ixx =  in (5) 

( ) ( ) 1111'11
'

1' +++++−++=+=+ iriyiqixyiPiyixy δ     (15) 

 ( ) iriyiqixyiPiy ++−= δ
''

 
(16) 

 

Also 

( )
( ) ( )

























−−−++−=

−−−+=−+ 11
2

11
11

1
'

i
y

h
iy

h
i

y
hhh

ixy
i

xy

i
xy

δδδδδ
δ (17) 

( )
( ) ( )

h

ixyixy

ix
i

y
δδ

δ
−−−+=− 1

























−−−++−= 11

2

11
1

i
y

h
iy

h
i

y
hh

δδδ
           (18) 

 

From (15) and (16) 

( )( ) ( ) 1111
'

122
'

2
'

1
'

2 +−++−−++−++−=+− iriyiqixyiPiriyiqixyiPiyiy δδ

 

( )
1211211

2

11
12

+−+++−+−−−++−+−
= 
























i
riri

y
i

qiyiq
i

y
h

iy
h

i
y

hh

i
PiP δδδ (19) 
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( )
























−−−++−

+−
=+− 11

2

11
12'

12
'

i
y

h
i

y
h

i
y

hh

i
P

i
P

i
y

i
y

δδδ

12112 +−+++−+ iririyiqiyiq
   

         (20) 

 

Substituting (19) in (13) and then in (11) we get 







































−−−++−+−

+++=−++

11
2

11
12

27

2

27

17

27

20

3

12

iy
h

iy
h

iy
hh

iPPihiyiyixix
y

δδδ
δ  

 ]112112[
27

2

iy
h

i
y

h
i

riri
y

i
qiyiq

h δδ
++−+−+++−+     

(21) 

 

Substituting (20) in (14) and then (12) we get 

27

2

27

120

27

7

3

12 hiyiyixix
y +++=−++









δ  

































−−−++−+−

11
2

11
12

iy
h

iy
h

iy
hh

iPiP δδδ
+

27

2 h

[ ]111 22 +++ −+−+ iiiiii rryqyq
ii y

h
y

h

δδ
+− + 1

           (22) 

 

Now substituting (9), (10), (21) and (22) in (8) 

































−+−−++−+=−+ 111111 iy

h
iy
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iPiy

h
iy

h
iPiyiy

δδδδ

















−−++








+








−−+

++
−

3
1

'

3

11

' 31
8 ii

iiiiii qPryqy
h

y
h

P
h δδ

 

( ) 
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−
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+
111

1 1
2

12
27

2

27

7

27

20
iiiii

ii y
h

y
h

y
h

PP
yy δδδ

 

3
11

'

3
1111 33
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2
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4
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2

27

4
++++++ +








+−−


−+−+

iiiiiiiiii ry
h

y
h
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h

r
h
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h

yq
h δδ
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3
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'
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ii
qP

( ) 
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−++ −++

+
111

1 1
2
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27

2

27
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27

7
iiiii

ii y
h

y
h

y
h

PP
yy δδδ

3
21

'

3
2111 33

27

4

27

2

27

4

27

2
++++++ +








+−−


−+−+

iiiiiiiiii ry
h

y
h

Pr
h

r
h
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h

yq
h δδ
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−− +++++ 1111

'

1 1 iiiiii ryqy
h

y
h

P
δδ

          (23) 

 

Rearranging the terms, we get the following 3 term recurrence 

relation  

iiiiiii DyCyByA =+− +− 11
            (24) 

for 1........2,1 −= Ni .Where  

( ) ( )iiiiiiiiiii PPqPPPqPP
h
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'
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8
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1

2
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3
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7

9
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2
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5
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1

'

1
8

1
8
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−+ ii q

h

h
P

h δ
 

( ) ( )1
3

1

'

3
1

2

3
2

3
11 2

368

3

8
++++++ −





 −−





 +++= iiiiiiiii rrqP

h
rr

h
rr

h
D

( )1
3

2

'

3
2

2

2
36

+++
−





 −− iiii

rrqP
h

  

         (25) 

 

From equation (24) we get a system of equations with (N+1) 

unknowns 0y to Ny  Solving these equations by using the given 

boundary conditions (2) we obtain the solution ( 0y
 
to Ny ) of 

the boundary value problem (1)-(2).  

 

Right end boundary layer problems: Consider a singular 

perturbation problem 

( ) ( ) ( ) ( ) ( ) ( ) [ ]1,0;
'

" ∈=++∈ xxfxyxbxyxaxy                (26) 

With ( ) ( ) βα == 1&0 yy             (27) 

We suppose that )(),(),( xfxbxa  to be sufficiently 

continuously differentiable functions in [0, 1]. In addition we 

assume that for some negative constant M, ( ) 0<≤ Mxa in 

[ ]1,0 .This assumptions entail that the boundary layer will be in 

the neighborhood of 1=x . By Taylors series expansion we 

have 

( ) ( ) ( )xyxyxy
'''' δδ +=+               (28)  

( ) ( ) ( )
δ

δ xyxy
xy

''
" −+

=⇒  

 

Where δ is a small positive deviating argument (0<δ <<1). 

Substituting in (26) and rearranging 

( ) ( ) ( ) ( ) ( ) ( )xrxyxqxyxPxy +++= δ
''

   
        (29) 

where ( )
( )

( )
( )

( )
( )

( )
( ) ∈−

=
∈−

−
=

∈−

∈−
=

xa

xf
xr

xa

xb
xq

xa
xP

δ

δ

δ

δ

δ
,,

        

(30) 
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Dividing the interval [ ]1,0  in to Ν  equal parts with mesh size 

h; i.e. Niihx
N

h i ....1,0,,
1

=== , integrating (29) in

[ ]ii xx ,1−  ( )1....2,1 −= Ni .  

 

We get  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫
−

+++=− −

i

i

x

x

ii dxxrxyxqxyxPxyxy

1

'

1 δ

  

 ( ) ( ) ( ) ( )δδ +−+= −− 11 iiii xyxPxyxP

( ) ( ) ( ) ( ) ( )( )∫
−

+++−+
i

i

x

x

dxxrxyxqxyxP

1

' δ

 

         (31)  

 

We use Simpson’s 
8

3  rule for evaluating the integral 

approximately ( ) ( )δδ +−+=− −−− 111 iiiiii xyPxyPyy

( )[
1111

'

1
8

−−−−− +++−+ iiiii ryqxyP
h

δ
 

3
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1

3
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−
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+
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−

−
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3
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3
1
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i
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yP δ
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iiiiii
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+

−
δ'

3
1

           (32) 

 

By Taylors series we have 

( ) '

111 −−− +≅+ iii yyxy δδ
 ii y

h
y

h

δδ
+








−= −11           (33) 

( ) 11 ++







−=+ iii y

h
y

h
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δδ
δ             (34) 

and 
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− δδ
3
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3

2
i
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1

3
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y
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3
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1

3
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1
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(36) 

 

From hermite interpolation  
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3
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2
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1
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           (37) 

[ ] [ ]''
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1
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h

yyxy −++=






−−−

          (38) 

 

Substituting x = x i+1 and ixx =
 
in (28) we get  

( ) 1111
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'

1 −−−−−− +++= iiiiii ryqxyPy δ            (39) 

( ) iiiiii ryqxyPy +++= δ''
            (40) 

 

Also 
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From (39) and (40) we can evaluate the values of 
' '

i i
y y

-
-

1
2  

and
' '

i i
y y

-
-

1
2 . 

 

Substituting these values in (35) we get 
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Substituting these values in (36) we get 
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Substituting (33), (34), (43) and (44) in (32) 
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(45) 

 

Rearranging the terms of (45) we get we get the following 3 

term recurrence relation 

1...2,1;11 −==+− =− NiDyCyByA iiiiiii
          (46) 

 

where  
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 (47) 

 

From equation (46) we get a system of equations with (N+1) 

unknowns 0y to Ny . The boundary conditions (27) with (N-1) 

equations give (N+1) equations. Solving the system of 

equations we get the solution ( 12,1 .... −Nyyy ). 

 

Numerical Results 

Three linear singular perturbation problems with left-end 

boundary layer and one linear problem with right-end boundary 

layer, of which two are with constant coefficients and two are 

with variable coefficients are considered. 

 

Example1: From fluid dynamics for fluid of small viscosity 

(Reinhardt
20

, example 2) we consider the non-homogeneous 

singular perturbation problem   

( ) ( ) ;21
'"

xxyxy +=+∈  [ ]1,0∈x  

With ( ) 00 =y and ( ) 11 =y  

 

The exact solution of non-homogeneous singular perturbation 

problem is  

 
( ) ( )

( )






 −






 −−∈

+∈−+=
∈

−

∈
−

1

1

112

21

e

e

xxxy

x

 

For 
310−∈=  and 

410−∈=  the numerical results are 

specified in the tables 1and 2 for different values of δ  

satisfying the condition 10 <<< δ  respectively. The 

comparison is shown in figures- 1 and 2. 

 

Table-1 

Numerical outcome of example 1 for ε=0.001, h=0.1 

 

x 
y(x) 

Exact solution 
δ=0.001 δ=0.005 

0.1 -0.8684178 -0.8684165 -0.8881992 

0.2 -0.7582041 -0.7582028 -0.7583992 

0.3 -0.6085981 -0.6085968 -60859930 

0.4 -0.4387999 -0.4387989 -0.4387993 

0.5 -0.249 -0.2489990 -0.2489994 

0.6 -0.0392 -0.0391992 -0.0391995 

0.7 0.1906 0.19060062 0.1906004 

0.8 0.4404 0.44040043 0.4404003 

0.9 0.7102 0.71020022 0.7102002 

 

Table-2 

Numerical outcome of example 1 for ε=0.0001, h=0.1 

x 

y(x) 

Exact solution 

δ=0.0001 δ=0.0005 

0.1 -0.8878222 -0.88782 -0.8898192 

0.2 -0.759838 -0.75984 -0.7598393 

0.3 -0.60986 -0.60986 -0.6098593 

0.4 -0.43988 -0.43988 -0.4398794 

0.5 -0.2499 -0.24990 -0.2498994 

0.6 -0.03992 -0.03992 -0.0399195 

0.7 0.19006 0.19006 0.1900604 

0.8 0.44004 0.44004 0.4400403 

0.9 0.71002 0.71002 0.7100202 
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Figure-1 

Comparison of numerical results with ε=0.001 

 

 
Figure-2 

Comparison of numerical results with ε=0.0001 

 

Example2: From Bender and Orszag é ù
ê úë û
2 (page 480, problem 

9.17 with 0=α ) 

we consider the homogeneous singular perturbation problem  

( ) ( ) ( ) ;0'" =−+∈ xyxyxy  [ ]1,0∈x  

With ( ) 10 =y and ( ) 11 =y  

 

The exact solution of homogeneous singular perturbation 

problem is  
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For 
310 −∈=  and 

4
10

−∈= , the results are specified in the 

table 3 and table 4 respectively. The comparison is shown in 

figures 3 and 4. 
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Table-3 

Numerical outcome of example 2 for ε=0.001, h=0.01 

x 
y(x) 

Exact solution 
δ=0.001 δ=0.005 

0 1 1 1 

0.02 0.38084 0.380839 0.375678 

0.04 0.383299 0.383299 0.383260 

0.06 0.390992 0.390991 0.390994 

0.08 0.398882 0.398882 0.398885 

0.1 0.406932 0.406932 0.406935 

0.2 0.449685 0.449685 0.449688 

0.3 0.496929 0.496929 0.496932 

0.4 0.549138 0.549137 0.549140 

0.5 0.606831 0.606831 0.606833 

0.6 0.670585 0.670585 0.670588 

0.7 0.741038 0.741038 0.741040 

0.8 0.818893 0.818893 0.818894 

0.9 0.904927 0.904927 0.904928 

1 1 1 1 

 

Table-4 

Numerical outcome of example 2 for ε=0.0001, h=0.01 

x 
y(x) 

exact solution 
δ=0.0001 δ=0.0005 

0 1 1 1 

0.02 0.375423 0.375423 0.37534787 

0.04 0.38294382 0.38294382 0.38292964 

0.06 0.39067871 0.39067871 0.39066455 

0.08 0.39856984 0.39856984 0.3985557 

0.10 0.40662035 0.40662036 0.40660625 

0.20 0.44937876 0.44937877 0.4493649 

0.30 0.49663346 0.49663346 0.49662006 

0.40 0.54885726 0.54885726 0.54884456 

0.50 0.60657267 0.60657268 0.60656098 

0.60 0.67035719 0.67035719 0.67034685 

0.70 0.74084901 0.74084901 0.74084044 

0.80 0.81875344 0.81875344 0.81874712 

0.90 0.90484995 0.90484995 0.90484646 

1.00 1 1 1 

 

 
Figure-3 

Comparison of numerical results with ε=0.001 
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Example 3: Consider the singular perturbation problem with 

variable coefficients from Kevorkian
5 
(page 33, with )

2
1−=α  
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We have taken consistently valid approximation (Nayten
6
, page 

148) as per the exact solution that is  
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The results obtained by our method and by Simpson’s 1/3 rule 

for 310 −∈=  and for 410 −∈=  are specified in the tables 5 

and 6 respectively, and the comparison is shown in figures 5 

and 6. The comparison of errors in both cases is given in the 

tables 7 and 8 respectively. 

 

 
Figure-4 

Comparison of numerical results with ε=0.0001 

 

 
Figure-5 

Comparison of numerical results with ε=0.001 
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Table-5 

Numerical outcome of example 3 for ε=0.001, h=0.1 

x 

  y(x)     

exact solution by 3/8 rule  by 1/3 rule  by 3/8 rule by 1/3 rule 

δ=0.001 δ=0.001 δ=0.005 δ=0.005 

0 1 1 1 1 1 

0.1 0.527732 0.526295 0.530153 0.529536 0.526316 

0.2 0.551594 0.546451 0.554211 0.553544 0.555556 

0.3 0.583946 0.580445 0.586717 0.58601 0.588235 

0.4 0.620398 0.618668 0.62334 0.622589 0.625 

0.5 0.661701 0.659856 0.664837 0.664036 0.666667 

0.6 0.708892 0.706915 0.712249 0.711391 0.714286 

0.7 0.763324 0.761195 0.766937 0.766012 0.769231 

0.8 0.826802 0.824496 0.830714 0.829712 0.833333 

0.9 0.901782 0.899267 0.906047 0.904954 0.909091 

1 1 1 1 1 1 

 

Table-6 

Numerical outcome of example 3 for ε=0.0001, h=0.1 

x 

  y(x) 
   

exact solution 
by 3/8 rule  by 1/3 rule  by 3/8 rule by 1/3 rule 

δ=0.0001 δ=0.0001 δ=0.0005 δ=0.0005 

0 1 1 1 1 1 

0.1 0.522382 0.520901 0.524902 0.524256 0.526316 

0.2 0.55085 0.549284 0.553515 0.552831 0.555556 

0.3 0.583253 0.581595 0.586072 0.585349 0.588235 

0.4 0.619707 0.617945 0.622701 0.621932 0.625 

0.5 0.661022 0.659142 0.664212 0.663392 0.666667 

0.6 0.708238 0.706225 0.711654 0.710776 0.714286 

0.7 0.76272 0.760551 0.766395 0.765449 0.769231 

0.8 0.826281 0.823932 0.83026 0.829235 0.833333 

0.9 0.9014 0.898837 0.905736 0.904618 0.909091 

1 1 1 1 1 1 

 

 
Figure-6 

Comparison of numerical results with ε=0.0001 
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Table-7 

Comparison of absolute errors by Simpson’s 3/8 rule and by Simpson’s 1/3 rule for example 3 with ε=0.001 and h=0.1 

x 

Error  
 

by 3/8 rule  by 1/3 rule  by 3/8 rule by 1/3 rule 

δ=0.001 δ=0.001 δ=0.005 δ=0.005 

0 0 0 0 0 

0.1 0.001420 2.08E-05 0.003840 0.003220 

0.2 0.003962 0.009105 0.001344 0.002012 

0.3 0.004289 0.00779 0.001518 0.002225 

0.4 0.004602 0.006332 0.00166 0.002411 

0.5 0.004966 0.006811 0.001829 0.002631 

0.6 0.005394 0.007371 0.002036 0.002895 

0.7 0.005907 0.008036 0.002293 0.003218 

0.8 0.006531 0.008837 0.00262 0.003622 

0.9 0.007309 0.009824 0.003044 0.004137 

1 0 0 0 0 

 

Table-8 

Comparison of absolute errors by Simpson’s 3/8 rule and by Simpson’s 1/3 rule for example 3 with ε=0.0001 and h=0.1 

x 

Error 

by 3/8 rule  by 1/3 rule  by 3/8 rule by 1/3 rule 

δ=0.0001 δ=0.0001 δ=0.0005 δ=0.0005 

0 0 0 0 0 

0.1 0.003934 0.005415 0.001414 0.002060 

0.2 0.004706 0.006272 0.002041 0.002724 

0.3 0.004982 0.006641 0.002163 0.002886 

0.4 0.005293 0.007055 0.002299 0.003068 

0.5 0.005645 0.007524 0.002454 0.003274 

0.6 0.006047 0.008061 0.002631 0.00351 

0.7 0.006511 0.008679 0.002836 0.003782 

0.8 0.007052 0.009401 0.003074 0.004099 

0.9 0.007691 0.010253 0.003355 0.004473 

1 0 0 0 0 

 

Example4. Consider the singular perturbation problem 

 ( ) ( ) [ ]1,0,0" ' ∈=−∈ xxyxy   

  With ( ) 10 =y  and ( ) 01 =y . 

 

The exact solution of singular perturbation problem is  

  ( )
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At 1=x  this problem has a boundary layer. For 
310 −∈=  and 

for 
4

10
−∈=  the results are specified in the tables 9 and 10 

respectively. 

 

 

 

Table-9 

Numerical outcome of example 4 for ε=0.001, h=0.01 

x 
y(x) 

exact 
δ=0.002 δ=0.005 

0.1 1 1 1 

0.2 1 1 1 

0.3 1 1 1 

0.4 1 1 1 

0.5 1 1 1 

0.6 1 1 1 

0.7 1 1 1 

0.8 1 1 1 

0.9 1 1 1 

0.92 1 1 1 

0.94 0.999999 0.999999 1 
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Table-10 

Numerical outcome for example 4 with ε=0.0001, h=0.01 

x 
y(x) 

exact 
δ=0.0002 δ=0.0005 

0.1 1 1 1 

0.2 1 1 1 

0.3 1 1 1 

0.4 1 1 1 

0.5 1 1 1 

0.6 1 1 1 

0.7 1 1 1 

0.8 1 1 1 

0.9 1 1 1 

0.92 1 1 1 

0.94 1 1 1 

 

Conclusion 

We consider four linear boundary value problems. Their 

numerical solution and absolute errors are given at different 

values of δ  by fixing the mesh size h. The approximate 

solution and exact solutions at the grid points are summarized 

in the tabular form. Further the approximate solution and exact 

solution are shown graphically. It is observed that the 

approximate solution is very near to the exact solution. From 

the tables it is seen that the maximum absolute error is almost 

same for the both values of ε. It is also observed that the 

method is more accurate for the problems with constant 

coefficients when compared to the problems with variable 

coefficients. It is also observed that the results obtained are 

more or less same as the numerical solution obtained by 

employing Simpson’s one third rule in the case of singular 

perturbation problems with constant coefficients. For singular 

perturbation problems with variable coefficients the results 

obtained are more close to the exact solution rather than the 

solution obtained by employing Simpson’s 1/3 rule.  
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