

Research Journal of Mathematical and Statistical Sciences _____ Vol. **2**(7), 4-6, July (**2014**)

ON Q-Fuzzy Ideal and Q-Fuzzy Quotient Near-Rings

Bhimraj Basumatary¹ and Gopi Kanta Barthakur²

¹Research Scholar, Department of Mathematical Sciences, Bodoland University, Kokrajhar, Assam, INDIA ²Department of Mathematics, G. K. B. College, Morigaon, Assam, INDIA

Available online at: www.isca.in, www.isca.me

Received 20th May 2014, revised 15th June 2014, accepted 10th July 2014

Abstract

In this paper, we shall study Q-fuzzy ideal and Q-fuzzy quotient near-ring and investigate some of there properties and we prove some characterizations of a near-ring in terms of Q-fuzzy quotient near-ring and Q-fuzzy ideal.

Keywords: Q-fuzzy ideal, Q-fuzzy quotient near-ring.

Introduction

Zadeh¹ introduce fuzzy set in 1965. The idea of the fuzzy ideal² in near-ring³ is discussed by Zaid². Solarairaju *et al.*⁴ introduce the new structures of Q-fuzzy groups. On the other hand Muhammad Akram⁵ introduces the T-fuzzy Ideals and quotient near-ring. In this paper, we shall study quotient near-rings via Q-fuzzy³ ideals and study some of their properties. Generally in this work we follow a paper published by Muhammad Akram⁵ to prove theorems.

Preliminaries

Definition: A near-ring³ is a set R which is non empty with two binary operation "+" and "." Which holds the condition, (R, +) is group, (R, .) is semi¹ group and multiplicative is distributive with respect to addition.

Definition: Let us consider a non empty set A. Then a function $\mu : \mathbb{R} \to [0, 1]$ is a fuzzy¹ subset of A.

Definition: A function μ : G×Q \rightarrow [0, 1] is called Q-fuzzy³ set in G, where Q be a set and G be group respectively.

Definition: Consider a function f from a set A to B and a Q-fuzzy³ set μ in A. Then μ is a Q-fuzzy³ set in B defind by

$$f(\mu)(y,q) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x,q) : f^{-1}(y) \neq \phi \\ 0 : otherwise \end{cases}$$

Definition: Let $Im(\lambda)$ denote the image set of λ . Let λ be a Q-fuzzy³ set in a set R. For t in [0, 1] the set $\lambda_t = \{ x \in R, q \in Q; \lambda(X, Q) \ge t \}$ is called Q-level³ subset of λ .

Definition: Consider μ a Q- fuzzy³ subset in a near-ring⁵ R, then μ is Q- fuzzy³ subnear-ring⁵ of R if it holds the conditions 1. $\mu(x-y, q) \ge \min\{\mu(x, q), \mu(y, q)\}$ 2. $\mu(xy, q) \ge \min\{\mu(x, q), \mu(y, q)\}$ $\textbf{Definition:} \ A \ Q\textsc{-}fuzzy^3 \ subnear-ring \ \mu \ in \ R \ is \ called \ Q\textsc{-}fuzzy^3 \ ideal^6 \ if$

- 1. $\mu(y + x y, q) \ge \mu(x, q)$
- 2. $\mu(xy, q) \ge \mu(y, q)$
- 3. $\mu((x+z)y-xy, q) \ge \mu(z, q)$

Theorem: If we consider a onto homomorphism⁵ function $f : A \rightarrow B$ of near-rings. Consider μ be a Q- fuzzy³ ideal⁶ in A, we get, then a Q- fuzzy³ ideal⁶ f(u) in B. Proof: Consider v, we two elements in the set B.

Since f is onto homomorphism, then as Muhammad Akram⁵ we are clear to show

 $\{b - c | b \in f^{-1}(v), c \in f^{-1}(w)\}$ is subset of $\{x | x \in f^{-1}(v-w)\}$.

Now as definition¹ 2.9 of $f(\mu)(x, q)$ we have

$$f(\mu)(v-w, q) = \sup_{x \in f^{-1}(v-w)} \mu(x, q)$$

$$\geq \sup_{\substack{b \in f^{-1}(v) \\ c \in f^{-1}(w)}} \mu(b-c,q)$$

$$\geq \min \left\{ \sup_{b \in f^{-1}(v)} \mu(b,q), \sup_{c \in f^{-1}(w)} \mu(c,q) \right\}$$

$$= \min \left\{ f(\mu)(v,q), f(\mu)(w,q) \right\}$$

Now following defination¹ 2.9

$$f(\mu)(vw, q) = \sup_{\substack{x \in f^{-1}(vw) \\ c \in f^{-1}(w)}} \mu(bc, q)$$

$$\geq \min \left\{ \sup_{b \in f^{-1}(v)} \mu(b,q), \sup_{c \in f^{-1}(w)} \mu(c,q) \right\}$$

f(\mu) is Q-fuzzy³ sub near-ring⁵.

Now also we have $f(\mu)(v+w-v, q) = \sup_{x \in f^{-1}(v+w-v)} \mu(x, q)$

$$\geq \sup_{\substack{b \in f^{-1}(v) \\ c \in f^{-1}(w)}} \mu(b+c-b,q)$$

$$\geq \sup_{c \in f^{-1}(w)} \mu(c,q)$$

$$= f(\mu)(w,q)$$

Again as just we did, it can show easily $f(\mu)(vw, q) = \sup_{x \in f^{-1}(vw)} \mu(x, q)$

$$\geq \sup_{\substack{b \in f^{-1}(v) \\ c \in f^{-1}(w)}} \mu(bc,q)$$

$$\geq \sup_{c \in f^{-1}(w)} \mu(c,q)$$

$$= f(\mu)(w,q)$$

Now from the result above it is clear that $f(\mu)((v+z)w-vw, q) \ge f(\mu)(z, q)$. Hence $f(\mu)$ is Q-fuzzy³ ideal⁶.

Theorem 3.2 Consider an ideal⁶ A of a near ring⁵ R. Consider a Q- fuzzy³ ideal⁶ μ of R, let us construct Q- fuzzy³ set Ψ of R/A such that Ψ (a+A, q) = sup_{xeA} μ (a+x, q) then Ψ is Q-fuzzy³ ideal⁶ of the quotient⁵ near- ring⁵ R/A with respect to A. Proof: Consider two elements a, b of R so that (a+A) is equal to (b+A). Then we have b =a+y for some y in A. Now as Muhammad Akram⁵ we try to show Ψ is well define Ψ (b+A, q)= sup_{xeA} μ (b+x, q) = sup_{xeA} μ (a+y+x, q) = sup_{xeA} μ (a+z, q) = Ψ (a+A, q). Consider (x+A), (y+A) be two elements of R/A, now following

 $\begin{array}{l} \mbox{definition}^6 \ 2.6, \ 2.9 \ \mbox{and} \ 2.12 \ \mbox{we do the following steps} \\ \Psi \left((x+A)-(y+A), \ q\right)=\Psi((x-y)+A, \ q) \\ = \ \mbox{sup}_{z \in A} \ \mu \ ((x-y)+z, \ q) \\ = \ \mbox{sup}_{u \cdot v = z \in A} \ \mu \ ((x-y)+(u-v), \ q) \\ = \ \mbox{sup}_{x \in A} \ \mu \ ((x+u)-(y+v), \ q) \\ \geq \ \ \mbox{min} \{ \mbox{sup}_{x \in A} \ \mu(x+u, \ q), \ \mbox{sup}_{x \in A} \ \mu(y+v, \ q) \} \end{array}$

Also similarly following the definition⁶ 2.9 $\Psi((x+A)(y+A), q)=\Psi(xy+A, q)$ $= \sup_{Z \in A} \mu(xy+z, q)$ $= \sup_{z=uv \in A} \mu(xy+uv, q)$ $\geq \min \{ \sup_{u,v \in A} \mu(x+u, q), \sup_{x \in A} \mu(y+v, q) \}$

This shows that Ψ is Q- fuzzy³ sub near-ring in R/A. Thus we can show Ψ is an Q- fuzzy³ ideal⁶.

Theorem 3.3 Consider an ideal⁶ A of a near- ring⁵ R. We can have then one to one mapping between then set of Q-fuzzy³ ideals⁶ μ of R so that $\mu(0, q)$ is equal to $\mu(s, q)$ for all "s" in A and Ψ set of all Q-fuzzy³ ideals⁶ of R/A.

Proof: Let μ be Q-fuzzy³ ideal⁶ of R so following theorem 3.1 and 3.2 and from definition 2.4 and 2.6 we are clear to show $\Psi(a+A, q)=\sup_{x\in A}\mu(a, q)$ is a Q-fuzzy³ ideal⁶ of R/A. Since, we have $\mu(0, q)=\mu(s, q)$

Also from definition² 2.12 $\mu(a+s, q) \ge \mu(a, q)$. Also, $\mu(a, q) = \mu(a+s-s, q) \ge \mu(a+s, q)$ Thus we have $\mu(a+s, q)=\mu(a, q)$, for all $s \in A$.

Thus, $\Psi(a+A, q)$ is equal to $\mu(a, q)$. Hence the corresponding $\mu \mapsto \Psi$ is one to one. Let Ψ be Q-fuzzy³ ideal⁶ of R/A. Consider μ as a Q-fuzzy³ set in R so that for all "a" in A $\mu(a, q)$ is equal to $\Psi(a+A, q)$.

Now, for x, y $\in \mathbb{R}$, we have from definition 2.6 and from theorems 3.1 and 3.2 it follows $\mu(x-y, q) = \Psi((x-y)+A, q)$ $= \Psi((x+A)-(y+A), q)$ $\geq \min \{ \Psi((x+A), q), \Psi((y+A), q) \}$ $= \min \{ \Psi((x+A)-(y+A), q) \}$

 $\begin{array}{l} \mu(xy,\,q){=}\,\Psi((xy){+}A,\,q)\\ {=}\,\Psi((x{+}A)(y{+}A),\,q)\\ {\geq}\,\Psi(x{+}A,\,q)\\ {=}\mu(x,\,q). \end{array}$

Thus μ is Q-fuzzy³ ideal⁶ of R. clearly $\mu(a, q)$ is equal to $\Psi(a+A, q)$ which equal to $\Psi(A, q)$, for all a in A. This indicates that $\mu(0, q)$ is equal to $\mu(s, q)$ for all s ϵA .

Theorem 3.4 Let us consider A be an ideal⁶ of a near-ring⁵ R. We can have then a Q-fuzzy³ ideal⁶ μ of R so that $\mu(0, a)$ is t and λ_t is A, for t \in [0, 1] where λ_t is called Q-level³ subset of λ . Proof: Following definition 2.6 and theorems 3.1, 3.2, 3.3 the proof is straight forward².

Theorem 3.5 Consider a Q-fuzzy³ ideal⁶ μ of a near-ring⁵ R also $\mu(0, a)$ is t. Then Ψ is a Q-fuzzy³ ideal⁶ of R/ λ_t , where Ψ is constructed as $\Psi(x+\lambda_t, q) = \mu(x, q)$ for all $x \in \mathbb{R}$ and λ_t is called Q-level³ subset of λ .

Proof: Similarly following definition 2.6 and theorems 3.1, 3.2, 3.3 and 3.4 proof is straight forward².

Conclusion

In this paper we have defined Q-fuzzy subnear-ring, Q-fuzzy ideal. With the help of Q-fuzzy subnear-ring and Q-fuzzy ideal, we have discussed on Q-fuzzy quotient near-ring and proved some theorems on Q-fuzzy quotient near-ring. We hope that this work will help for further work of fuzzy set.

References

1. Zadeh L.A., Fuzzy sets, *Information and Control*, **8**, 338-353 (1965)

Research Journal of Mathematical and Statistical Sciences _ Vol. 2(7), 4-6, July (2014)

- Zaid A., On fuzzy sub near-rings, *Fuzzy Sets and System*, 5. 44, 139-146 (1991)
- **3.** Mourad O.M., On Q-Fuzzy R-Subgroups of Near-Rings, *International Mathematical Forum*, **8**, 387-393 (**2013**)
- **4.** Solairaju A., Nagarajan R. A new structure and construction of Q-fuzzy group, *Advance in Fuzzy Mathematics*, **4**, 512-517 (**2009**)
- Akram M., On T-Fuzzy Ideals in Nearings, International Journal of Mathematics and Mathematical Sciences, doi:10.1155/2007/73514 (2007)
- 6. Bhakad S.K., Das P., Fuzzy subrings and ideals redefined, *Fuzzy Sets and System*, **81**, 383-393 (**1996**)
- 7. Bhakad S.K., Das P., On the definition of a fuzzy subgroup, *Fuzzy Sets and System*, **51**, 235-241 (**1992**)