The Solution Elements of Pure Subgroup is Random

H.M.A. Abdullah
Al- Mustansiriyah University, College of Basic Education

Available online at: www.isca.in, www.isca.me
Received $1^{\text {st }}$ January 2014, revised $2^{\text {nd }}$ May 2014, accepted $10^{\text {th }}$ June 2014

Abstract

In this paper, we are study the new definition of the pure subgroups of finite abelian group; which is called pure solutions element of pure subgroups, and we get a new results of random element and we are study the diameter of "Cayley" graphs of the abelian groups. Moreover, we get new results of symmetric groups..

Keywords: Solution, elements, subgroup, random.

Introduction

A subgroup H of finite abelian group, is pure if $\forall n \in Z, \forall x \in$ H if $n \mid x$ in G then $n \mid x$ in H. Which means that \exists an element $h \in H \ni n h=x \in H$. The element h is said to be pure solution element in H. A random solution is a random element of H.
A random pair is random solution of the $H \times H=$ $\left\{\left(h_{1}, h_{2}\right), h_{1}, h_{2} \in H\right.$, and are solutions elements of the equation $n h=x \in H\}$.

Example (1): Let $G=Z_{3} \otimes Z_{4}$ and take
$H=\{(0,0),(0,2),(1,0),(1,2),(2,0),(2,2)\}$
Test the element $(0,2)$ in H
Take $n=2$, clearly $2 \mid(0,2)$ in G
$(2(0,1)=(0,2) \in H)$ but $2 \mid(0,2)$ in H. There is no element $\in H(\operatorname{say} x) \ni 2(0, x)=(0,2)$ so the element $(0,1) \in G$ is not pure solutionin H.

Example (2): Take $G=Z_{4} \otimes Z_{6}$ and
$H=\{(0,0),(0,3),(2,0),(2,3)\}$
Take $n=3$, clearly that $3 \mid(0,3)$ in G
$3(0,1)=(0,3)$ and $3 \mid(0,3)$ in $H,(3(0,3)=(0,3))$ we can show that $\forall n \in Z^{+}, n$ is odd number then $n(0,3)=(0,3) \Rightarrow$ $n \mid(0,3)$ in H, but $\forall n \in Z^{+}, n$ is even number $n \mid(0,3)$ in G so $n \mid(0,3)$ in H therefore $\forall n \in Z^{+}, n \mid(0,3)$ in H.
the element $(0,3)$ is saidto be pure solution in H.
The study of the diameter of cayley graphs of the groups ${ }^{1-3}$. It can also be viewed as a contribution by Erdo and Turn ${ }^{4}$. Here we assume G is symmetric group. We also observe and gave a new results of pure random solutions.

Theorem A. Let H be a pure subgroup of G has $\left(h_{0}\right)$ fixed points, then the subgroup generated by H and a random pure has fixed solution is $\geq h_{0} / 2 n$, with $t, k \geq 2$ and $1-\frac{t}{\binom{n}{k}}-$ $f(n, k, t)$

Where $f(n, k, t)= \begin{cases}0 & \text { if } k>n / 4 \\ \frac{\binom{t}{2}\left(1+0\left(\frac{1}{n}\right)\right)}{\binom{n}{2 k}} & \text { if } k \leq n / 4\end{cases}$
Proof. Let $|G| \leq n$ and take $k \leq n / 2$,
(here $0(G) \geq 4)$ and $t \leq n / k$.
Let $\#=\pi(H)=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be the set of all pure solutions of H.And suppose that q is probability of H and P is probability of B, where B is another pure subgroup of G.

So $(B)=\frac{1}{\binom{n}{|B|}}$, using the union bounded
$q(H) \leq \sum_{r=1}^{t-1} \sum_{B \leq T_{r}} p B,|B| \leq \frac{n}{2} \quad$ so $\quad\left|T_{r}\right| \leq\binom{ t}{r}$
Moreover, for $B \leq T$, we have $r k \leq \frac{n}{2}$
Therefore;
$q(H) \leq \sum_{r=1}^{n / 2 k} \frac{\binom{t}{r}}{\binom{n}{r k}} \leq \frac{t}{\binom{n}{k}}+f(n, k, t)$
The last inequality is vacuously true if $k>n / 6$, the case $k \leq \frac{n}{6}$ is the content of the next theorem.

Theorem B. Let $2 \leq k \leq n / 6$ and $t k \leq n$ with H is pure in G.
$\sum_{r=2}^{n / 2 k} \frac{\binom{t}{r}}{\binom{n}{r k}}=o\left(\frac{\binom{t}{2}}{n\binom{n}{2 k}}\right)$
Proof. Since G is finite abelian group and H pure in G then H has finite random solutions so the set of solutions of $H \leq o(G)$. Let $a_{r}=\binom{t}{r}$ and $b_{r}=\binom{n}{r k}$ and $f(n, k, t)=\sum_{r=2}^{[n / 2 k]}\left(b_{2} a_{r}\right) / a_{2} b_{r}$

Claim $n f(n, k, t)$ is bounded.
We observe that
$\left(\binom{t}{r}\right)^{k} \leq\binom{ t k}{r k} \leq\binom{ n}{r k}$

Further we observe that for $n \geq 64$ and $r k \leq n / 2$, we have
$\binom{n}{r k}>\left(\binom{n}{2 k}\right)^{4}$
Indeed $\binom{n}{64 k}>\left(\frac{n}{64 k}\right)^{64 k}>\left(\frac{e n}{2 k}\right)^{8 k}>\left(\binom{n}{2 k}\right)^{4}$
Combining inequalities (6) and (7), we obtain for $r \geq 64$ that
$\frac{b_{2} a_{r}}{b_{r}}<\frac{1}{b^{2}} \leq \frac{1}{\binom{n}{4}}<\frac{1}{n^{2}}$
It follows that
$f_{1}(n, k, t)=\sum_{r=64}^{[n / 2 k]} \frac{b_{2} a_{r}}{a_{2} b_{r}}<\frac{1}{n}$
It remains to bounded the sum
$f_{2}(n, k, t)=\sum_{r=2}^{m} \frac{b_{2} a_{r}}{a_{2} b_{r}}$
Where $m=\min \{63,[n / 2 k]\}$
Obviously,
$f_{2}(n, k, t) \leq \sum_{r=2}^{m} \frac{b_{2} a_{m}}{b_{3}}<\frac{n^{64} b_{2}}{b_{3}}$
So,
$\frac{b_{2}}{b_{3}}<\left(\frac{3 k}{n-2 k}\right)^{k}$
Since $k \leq n / 6$, the right hand side is less than $\left(\frac{3}{4}\right)^{k}$, so we obtain the estimate $f_{2}(n, k, t)<n^{64} /\left(\frac{3}{4}\right)^{k} \leq \frac{1}{n}$

If $k \geq{ }^{65 \log n} / \log \left(\frac{4}{3}\right)$.
Assume now that $k \geq^{65 \log n} / \log \left(\frac{4}{3}\right)^{\text {. }}$.
It follows that for large enough n we have $3 k /(n-2 k)<$ $1 / \sqrt{n}$ and so

$$
f_{2}(n, k, t)<n^{64} b_{2} / b_{3}<n^{64} n^{-n} \leq \frac{1}{n}
$$

Assuming $k \geq 130$
Now, let us assume $k \leq 129$.
Then,

$$
\begin{equation*}
\frac{b_{2} a_{r}}{a_{2} b_{r}}=o\left(\frac{t^{r-2}}{n^{k(r-2)}}\right)=o\left(n^{-(k-1)(r-2)}\right)=o\left(\frac{1}{n}\right) \ldots . \tag{14}
\end{equation*}
$$

Proving $f_{2}(n, k, t)=o\left(\frac{1}{n}\right)$
Theorem C. Let H be a pure in a permutation group G with $f \leq n / 2$ fixed points. Let x_{0} be a random solution in G. Then
the probability that H and x_{0} do not generate transitive group less that $(f+1)\left(\frac{1}{n+o\left(\frac{1}{n^{2}}\right)}\right)$.

Proof. Let $A=f i x(H)$, so $|A|=f$. The probability that $a^{\varnothing} \neq B \subseteq A$ is invariant under x_{0}, as be for $p B=\frac{1}{\binom{n}{|B|}}$. Let $i(A)$ denote the probability that such an invariant nonempty subset exists. By the union bound
$i(A)=\sum_{B \subseteq A} p B=\sum_{r=1}^{f} \frac{\binom{f}{n}}{\binom{n}{r}}=\frac{f}{n}+o\left(\left(\frac{f}{n}\right)^{2}\right)$
Let now H_{0} denote the subgroup generated by H and x_{0}, and let $R={ }^{\sim} / A$ (the domain where the pure H actually acts).

Let $x_{0} \in R$ be the projection of $x_{0} \rightarrow R$
By observation 12, tow solutions element $x, y \in R$ belong to the same orbit under $H \rightleftharpoons$ they belong to the same orbit of the group generated by the pure of solutions random H, and $x_{0} \in$ R.

Therefore, the probability that not all solutions element of R are in the same orbit under H_{0} is
$\leq\left(\frac{1}{(n-f)}+\left(0\left(\frac{1}{(n-f)^{2}}=\frac{1}{n}+0\left((f+1) / n^{2}\right)\right.\right.\right.$
Finally, the probability that H_{0} is not transitive is at most the sum of this quantity and $i(A)$ which in turn is
$(f+1) / n+0\left((f+1) / n^{2}\right)$

Conclusion

In this work we get a new results of random element and we study the diameter of "Cayley" graphs of the abelian groups. Moreover, we get new results of symmetric groups and our main results are theorem A, B and C .

References

1. Babal L. and Hayes T., Near-independence of permutation group, ACM-SIAM symposium on Discrete Algorithms, 1057-1060, (2005)
2. Babal L., bels R., Seress on the diameter of symmetric group, Annual ACM-SIAM, (1), 101-110, (2004)
3. Babal L., On the diameter of Cayley group of the symmetric group, J.C.A, (49), 175-179 (1988)
4. Erado P. and Turan P., On same problems of statistical group theory, I.Z Verw. Geb, (4), 175-186 (1965)
