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Abstract

The aim of the present paper is to derive a new Integral formulae’s for the H -function due to Inayat-Hussain whose based
upon some integral formulae due to Qureshi et.al. The results are obtained in a compact form containing the multivariable

Polynomials.
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Introduction

In 1987, Inayat-Hussain ' introduced generalization form of
Fox's H-function, which is popularly known as H -function.

Now H -function stands on fairly firm footing through the
research contributions of various Auhors'®’,

H -function is defined and represented in the following
manner’:
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It may be noted that ¢(f ) the contains fractional powers of

some of the gamma function and m,n,p,q are integers such that
I<m<gqg,1<n<p,(@;),, (,BJ. ), are positive real numbers

and (4;),,,(B))

assume to be positive for standardization purpose. (¢;), , and

mi1,, May take non-integer values, which we

( ﬂj ), are complex numbers.

The nature of contour L, sufficient conditions of convergence
of defining integral (1) and other details about the H-function
can be seen in the papers*”. The behavior of the H-function for
small values of Izl follows easily from a result given by Rathie:
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The multivariable’s general Class of polynomials defined and
represented as follows'”:
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Where: n,,m, =1,...m, #0,Viel,2,..,r; the coefficients

A(k,,k,,....k, ), (k, 2 0)are arbitrary constant, real or complex.
The general class of polynomials'' is capable of reducing to a
number of familiar multivariable polynomials by suitable
specializing the arbitrary coefficients A(k,,k,,....k, ), (k, 2 0)

The general class of multivariable polynomials is defined by
Srivastava and Garg'
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Where  h,h,,..,h are arbitrary positive integers and

A(L;k ,ky,....;k, ), (L;h, 2 N;i=1,2,...,r)coefficients are

arbitrary constant, real or complex.

The following formulas'® will be required in our investigation.
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Main Integral Formulae’s
Let X stands for [ (,, 4+ 22 4 ]
First Integral Formula:
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The above result will be converging under the following
conditions: i. a>;b20;c+4ab>0 and 77>,8, 20,0>0,p=0
ii =1 + 0 min Re(b—') + 0 min Re(b—j) < l , il larg z I< i7IQ >
1. 1<j<sM ﬁ] 1<j<m ; 2 2

where Qis given by equation (4)

Second Integral Formula:
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The above result will be converging under the following
conditions: i. a=0;6>0;¢+4ab>0 and 7>, 20,0>0,p20
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where Q is given by equation (4)

Third Integral Formula:
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The above result will be converging under the following
conditions: i. a>0;b>0;c+4ab>0 and 77>,6 20,0>0,p20,
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where Qis given by equation (4).

Proof: To prove the first integral, we first express H -function
occurring on the L.H.S. of equation (10) in terms of Mellin-
Barnes type of contour integral given by equation (1) and

X, ..,x,_]

in series form with the help of (5) and then 1nterchanging the
order of integration and summation.
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Further using the result (7) the above integral becomes=
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Special Cases

1. If we are choosing in equation (10),n, =1; where

n,=12.;Viel,2,..,r, Then
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Similarly If we are choosing in equation (11), (12) putn, =1;

where n, =1,2..;Viel,2,..,
results.

r, Then we get new and unknown

Further If we put, A, =B, =A,=B

:ﬂ;:aj:ﬂjzlthen the

general type of G-function®,
case in'’.

;=1
H —function reduces to

which is also the new special

Conclusion

The present paper is to evaluate a new unified integrals whose

S . . . . .
i LJ v (c)z function involved in the integral formulae as well as their
arguments are quite general in nature and so our findings
f provide interesting unifications and extensions of a number of
l’lr T 1
Iin-ct-pc- > 1 (kigi)JrE (known and new) results.
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