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Abstract 

The present paper aims at exploring a probability model of continuous fertility and also studies its Bayesian analysis under the 

linex loss function. 
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Introduction 

The study of women fecundability has controversially been 

adopted by different workers. The utility of the study depends 

upon the proper adaption of the fecundability of women. In 

most of the available literature, it is found that the 

fecaundability is assumed to be constant for all women, 

Singh
1
. But in real life there are ample evidences that women 

vary in their fecundability. So, the fecundability may be 

thought of as a random variable Henry
2
. The present work 

deals with the same concept. Let us suppose that 

fecundability, say θ, follows distribution with p.d.f. g (θ). 

 

Bayesian forecasting is a natural product of a Bayesian 

approach to inference. TheBayesian approach in general 

requires explicit formulation of a model, and conditioning on 

known quantities, in order to draw inferences about unknown 

ones. 

 

A Bayesian approach might be useful in addressing these 

issues. By design, Bayesian methods natively consider the 

uncertainty associated with the parameters of a probability 

model (even if those uncertain parameters are believed to be 

fixed numbers). Bayesian methods are often recommended as 

the proper way to make formal use of subjective information 

such as expert opinion and personal judgments or beliefs of an 

analyst. An important advantage of Bayesian methods, unlike 

frequentist methods with which they are often contrasted, is 

that they can always yield a precise answer, even when no 

data at all are available. Finally, recent Bayesian literature has 

focused on the potential significance of model uncertainty and 

how it can be incorporated into quantitative analyses. 

 

If T is waiting time of first conception. It can be treated as 

random variable which follows the distribution with p.d.f. 

f(x/θ) is regarded as a conditional p.d.f. of X for given θ 

where marginal probability density function of θ is given by 

g(θ) the study can be continued. 

 

 

The Continuous Fertility Model 

The geometric distribution is being considered as a discrete 

model for the waiting time of first conception as developed by Gini �the continuous model for the analysis of waiting time of 

first conception. The intuitive properties of exponential 

distribution also helped in such considerations. For such 

analysis Geometric distribution was replaced by the 

exponential distribution. Thus if x denotes the time of first 

conception, then its probability density function, say f(x;θ) is 

given by 

f (x; θ) = 
�
θ
e�	 θ⁄ ;   x > 0,   θ > 0    (2.1.1) 

 

Where θ is instantaneous fecundability. 

The survival function, say S (x) is given by 

S (x) = P[X > x] 

         � � �
θ

∞

	 e�	 θ⁄ dx 

        =  �
θ

��� θ⁄

��
θ

�
	

∞

 

   Or      S(x)=e�	 θ⁄          (2.1.2) 

And the conception rate, say w(x) will be  

W(x) = 
��	�
� �	� 

         = 

�
θ
��� θ⁄
��� θ⁄  

         =  �
θ
               (2.1.3) 

Maximum Likelihood Estimator 

F (x �θ) =  ∏ f�x� ; θ�����  

             =��
θ
 � e�! θ⁄          (2.1.4) 

Where  

                 z = ∑ x� ����  

 

Bayesian Analysis of the Model 

The first conception of the family is also a part of the past 

family back ground; therefore Bayesian analysis of 

conception seems realistic on the basis of some history. In 

some coming section the Bayesian analysis has been done for 

a continuous time model i.e. exponential distribution.  
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We have f(x/θ) = θ e�θ	;  x > 0, θ > 0   

 

Where θ is the instantaneous fecundibility. 

The fundamental problems in Bayesian Analysis are that of the 

choice of prior distribution g(θ) and a loss function L (θ#, θ). Let 

us consider three prior distribution of θ to obtain the Bayes 

estimators which are as follows:  

 

Quasi-Prior: For the situation where the experimenter has no 

prior information about the parameter θ, one may use the quasi 

density as given by  

 g�(θ) = 
�
θ
& ;  θ > 0, d > 0    (2.1.5) 

Here d = 0 leads to a diffuse prior and d = 1, a non informative 

prior. 

 

Natural Conjugate Prior of θ: The most widely used prior 

distribution of θ is the inverted gamma distribution with 

parameters α and β (>0) with p.d.f. given by  

 g((θ)=) β
α

Γ(α)  θ�(α*�)      e�β θ⁄     ; θ > 0  (α, β) > 0
0                                                ;  otherwise             2(2.1.6) 

 

The main reason for general acceptability is the mathematical 

tractability resulting from the fact that inverted gamma 

distribution is conjugate prior for θ. 

 

Uniform Prior: It frequently happens that the life tester knows 

in advance that the probable values of θ lies over a finite range 

[α, β] but he does not have any strong opinion about any subset 

of values over this range. In such a case uniform distribution 

over [α, β] may be a good approximation. 

 g�(θ) =3 �
β�α ;      0 < α < θ ≤ β

0     ;             otherwise 2       (2.1.7) 

 

Loss Function: The Bayes estimator θ# of θ is of course, 

optimal relative to the loss function chosen. A commonly used 

loss function is the squared error loss function (SELF) 

L (θ#,θ) =(θ# − θ) (,        (2.1.8) 

 

which is a symmetrical loss function and assigns equal losses to 

over estimation and underestimation. Canfield
4
 points out that 

the use of symmetric loss function may be inappropriate in the 

estimation of reliability function. Over estimation of reliability 

function or average lifetime is usually much more serious than 

under estimation of reliability function or mean failure time. 

Also, an under estimate of the failure rate results in more 

serious consequence than an overestimation of the failure rate. 

This leads to statistician to think about asymmetrical loss 

functions which have been proposed in statistical literature. It is 

well known that the Bayes estimator under the above loss 

function, say θ#s, is the posterior mean. The squared error loss 

function (SELF) is often used also because it does not lead to 

extensive numerical computation but several authors Ferguson
5
, 

Varian
6
, Berger

7
, Zellner

8
 and Basu and Ebrahimi

9
, have 

recognized the inappropriateness of using symmetric loss 

function in several estimation problems. These have proposed 

different asymmetric loss function. 

 

Linex Loss Function: Varian (1975) introduced the following 

convex loss function known as Linex (Linear – Exponential) 

loss function. L(∆) =  b e:∆ − c∆ − b ;   a,c ≠ 0, b > 0    (2.1.9) 

 

Where ∆ = θ# – θ. it is clear that L (0) = 0 and the minimum 

occurs when a b = c, therefore, L(∆) can be written as L(∆) =  b ?e:∆ − a∆ − 1B;   a ≠ 0, b > 0     (2.1.10) 

 

Where a and b are the parameters of the loss function may be 

defined as shape and scale respectively. This loss function has 

been considered by Zellner
8
 Rojo

10
. Basu and Ebrahimi

9
 who 

considered the L(∆)as L(∆) =  b ?e:∆ − a∆ − 1B;   a ≠ 0, b > 0    (2.1.11) 

Where 

∆ =  θ#
θ

− 1 

 

and studied The Bayesian estimation under the asymmetric loss 

function for exponential life time distribution. This loss 

function is suitable for the situation where overestimation of θ 

is more costly than its underestimation. 

 

This loss function L (∆) have the following nice properties: 

 

(i) For a=1, the function is quite asymmetric about zero with 

overestimation being more costly than underestimation, 

(ii) For a < 0, L(∆) rises exponentially when ∆< 0 

(underestimation) and almost linearly when  ∆> 0 (Overestimation); and 

(iii) For small values of |a| 
L (∆) =

D :E∆E
( =  D:E

θ
E Fθ# − θG(

 

is almost symmetric function. Thus, for small values of |a|optimal estimates are not far different form those obtained 

with a squared error loss function. 

Let EI  and Eπ denote the prior and posterior expectations, 

respectively. The posterior expectation of loss function in 

(2.1.11) is  

Eπ?L(∆) B =bJe�: Eπ �exp : θ#
θ

 − aEπ �θ#
θ

− 1 − 1L   (2.1.12) 

 

The value of θ# that minimises (2.1.12), denoted byθ#M, is 

obtained by solving the following equation d
dθ# Eπ?L(∆) B = 0 

⇨ b 
ae�:Eπ P1
θ

exp a θ#
θ

Q − aEπ R1
θ

S� = 0 

 

Thus Bayes estimator under asymmetric loss L (∆), i.e., θ#Mis the 

solution of the following equation 

 Eπ  J�
θ

exp �: θ#T
θ

 L    = e:Eπ ��
θ
        (2.1.13) 
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It may be noted that Eπ(θ)  is the Bayes estimator under 

squared error loss function. 

 

Bays Estimator under UV(θ): Under W�(θ), the posterior 

distribution is defined by 

fFXYZG = 
[�F\Y]G ^��]� 

� [�F\Y]G ^�(])_]∞`       (2.2.1) 

 

Substituting the values of W�(X) abc  dFZYXGfrom equations 

(2.1.9) and (2.1.7) in (2.2.1) we get, after simplification, as   

fFXYZG = 
��e fP �∏ ghfhi� Q j�(ke) �el

� ��e fP �∏ ghfhi� Qj�(ke) �el_]∞`
     (2.2.2) 

                     =  mn*_��
o(b + c − 1) X�(n*_)q�r ]           ; ]st,n*_s�.⁄  

 

The Bayes estimator under squared error loss function is the 

posterior mean given by X#u  =� X∞t  fFXYZGcX.     (2.2.3)  

 

Substituting the values of f FXYZG from equation (2.2.2) in 

equation (2.2.3) and on solving we get 

  X#u   =� rfvl��
w(n*_��)

∞t X�(n*_)q�(r ]⁄ )cX 

= rfvl��
w(n*_��) � X�(n*_)q�(r ]⁄ )∞t cX 

= rfvl��
w(n*_��) 

w(n*_�()
rfvl�E  

X#u  = r
n*_�(              ;   n+d>2 .     (2.2.4) 

 

The Bayes estimator under linex loss function using the value 

of f FX Z⁄ G from equation (2.2.2) is the solution of equation 

(2.1.13) given by 

� �
] xqZy �z ]{ |]  }∞t  fFXYZGcX =  qz � �

] dFXYZGcX∞t  

 

On simplification which leads to  

   X#~   = ���j�� (fvl)⁄
z  m.                 (2.2.5) 

 

Bayes Estimator UnderU�(�): 

Under W((X), the posterior distribution is defind by 

f (X Z⁄ )  = [�F\Y]G ^E(]) 
� [�F\Y]G ^E(])_]∞`     (2.3.1) 

Substituting the values of W((X) abc  dFZ X⁄ G from equations 

(2.1.10) and (2.1.7) in (2.3.1) and simplifying, we get  

 

fFXYZG = 
��e fP �∏ ghfhi� Q j�(ke) ��

�(�)��e �v�j�� e⁄

� ��e fP �∏ ghfhi� Q j�(ke) ��
�(�)��e �v�j�� e⁄ _]∞`

 

= (�*r)fv�
w(n*�) X�(n*�*�)q��e(�*r)        (2.3.2) 

 

The Bayes estimator under squared error loss function is the 

posterior mean given by X#� = � X∞t  fFXYZGcX     (2.3.3) 

 

Substituting the values of f (X Z⁄ )from equation (2.3.2) in 

equation (2.3.3) and on solving, we get 

 X#� = (�*r)fv�
w(n*�) � X�(n*�)q��e(�*r)∞t cX 

      =  (�*r)fv�
w(n*�)  w(n*���)

(�*r)fv��� 

 X#�  =  �*r
(n*���)             (2.3.4) 

 

 The Bayes estimator under linex loss function L (∆), using the 

value of f (X Z⁄ ) from the equation (2.3.2) is the solution of 

equation (2.1.13) given by 

 � �
] xqZy �z]{| ]  }∞t  fFXYZGcX =  qz � �

]
]t  fFXYZGcX 

 

On simplification which leads to 

  X#~ = ���j�� (fv�v�)⁄
z  (� + m)     (2.3.5) 

 

Bayes Estimator Under U�(�): 
Under W�(X), the posterior distribution is defined by 

f FXYZG  = [�F\Y]G ^�(]) 
� [�F\Y]G ^�(])_]∞`       (2.4.1.) 

 

Substituting the values of W�(X) abc  f FX Z⁄ Gfrom equations 

(2.1.11) and (2.1.7) in (2.4.1) we get, after simplifying, we get  

f FXYZG  = ��e fP �∏ ghfhi� Q j�(ke) �(���)
 �  ��e fP �∏ ghfhi� Q j�(ke) �(���)_]��    , 

                    = 
rf��]�fj�k e⁄ )

���k�,n�� ��k�,n�� ,       (2.4.2) 

Where: �̂ (Z, b)= � q�\\t Zn��dt is the incomplete gama 

function 

 

The Bayes estimator under squared error loss function is the 

posterior mean given by 

   X#u =  � X��  fFXYZGcX       (2.4.3) 

 

Substituting the values of f FX Z⁄ G from equation (2.4.2) in 

equation (2.4.3), we get 

X#u  =� X�� rf��]�fj�k e⁄
���k�,n�� ����k�,n�� dX 

 

which on simplification leads to 

 X#u = P���k�,n�( ����k�,n�( 
���k�,n�� ����k�,n�� Qz.    (2.4.4) 

 

The Bayes estimator under linex loss function, by using the 

value of from fFθYxG equation (2.4.2) is the solution of equation 

(2.1.13) given by 
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  � �
] xqZy �z]{| ]  }��  fFXYZGcX =  qz � �

]
��  fFXYZGcX 

 

On simplification which leads to 

qz ��� k�  ,n ���� k�  ,n 
��Rk��e{| �  ,nS���Rk��e{| �  ,nS = � r

r�z]{|  
n

    (2.4.5) 

    

The equations (2.4.4) and (2.4.5) can be solved numerically. 

 

Conclusion 

Presented Probability model of waiting time of first conception 

analysed in the Bayesian environment under the precautionary 

loss function which gives the new dimension of research work 

in this field it is worth mentioning that for future work. It can 

be expend this type of work under the different situation in the 

Bayesian environment in the field of demography.  
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