I-Function and Boundary Value Problem in a Rectangular Plate

Neelam Pandey and Jyoti Mishra
Model Science College, Rewa, INDIA

Available online at: www.isca.in, www.isca.me
Received $12^{\text {th }}$ August 2014, revised $4^{\text {th }}$ October 2014, accepted $11^{\text {th }}$ October 2014

Abstract

This paper will put an insight into an application of a solution of boundary value problem in a rectangular plate with the help of I-function of one variable.

Keywords: I-function, boundary value problem.

Introduction

The I-function of one variable is defined by Saxena ${ }^{1}$ and we shall represent here in the following manner:
$I[z]=\mathrm{I}_{p_{i}, q_{i}}^{m, r}: r\left[z \left\lvert\, \begin{array}{l}{\left[\left(a_{j}, \alpha_{j}\right)_{1, n}\right],\left[\left(a_{j i}, \alpha_{j i}\right)_{n+1}, p_{i}\right]} \\ {\left[\left(b_{j}, \beta_{j}\right)_{1, m}\right],\left[\left(b_{j i}, \beta_{j i}\right)_{m+1}, q_{i}\right]}\end{array}\right.\right]=\frac{1}{2 \pi w} \int_{L} \theta(s) z^{s} d s(1)$
Where $\omega=\sqrt{(-1)}, z(\neq 0)$ is a complex variable and

$$
\begin{equation*}
z^{s}=\exp [s\{\log |z|+w \arg z\}] \tag{2}
\end{equation*}
$$

In which $\log |z|$ represent the natural logarithm of $|z|$ and $\arg |z|$ is not necessarily the principle value. An empty product is interpreted as unity, Also,

$$
\begin{equation*}
\left.\theta(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-\alpha_{j} s\right)}{\sum_{i=1}^{r}\left[\prod_{j=m+1}^{q i} \Gamma\left(1-b_{j i}-\beta_{j i} s\right) \prod_{j=n+1}^{p i} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right.}\right] \tag{3}
\end{equation*}
$$

m, n, and pi $\forall \mathrm{i} \in(1, \ldots . \mathrm{r})$ are no -negative integers satisfying $0 \leq \mathrm{n} \leq \mathrm{p}_{\mathrm{i}}, 0 \leq \mathrm{m} \leq \mathrm{q} ;, \quad \forall \mathrm{i} \in(1, \ldots . \mathrm{r}), \alpha_{\mathrm{ji}}$, $\left(j=1, \ldots . . p_{i} ; I=1, \ldots \ldots \ldots r\right)$ and $\beta_{j i}\left(j=1, \ldots . q_{i} ; I=1, \ldots . r\right)$ are assumed to be positive quantities for standardization purpose . Also $a_{j i}\left(j=1, \ldots, p_{i} ; I=1, \ldots \ldots, r\right)$ and $b_{j i}\left(j=1, \ldots \ldots . ., q_{i} ; I=\right.$ $1, \ldots ., \mathrm{r})$ are complex numbers such that none of the points.

$$
\begin{equation*}
S=\left\{(b n+v)\left|\beta_{h}\right|\right\}, h=1, \ldots \ldots, m ; v=0,1,2, \ldots \ldots \ldots \tag{4}
\end{equation*}
$$

Which are the poles of $T\left(b_{n}-\beta_{n} S\right), h=1, \ldots \ldots m$ and the points.
$\mathrm{S}=\left\{\left(a_{1}-\eta-1\right)\left|\alpha_{l}\right| l=1, \ldots ., n ; \eta=0,1,2, \ldots\right.$,
Which are the poles of $\Gamma\left(1-a_{l}+\alpha_{l} s\right)$ coincide with one another, i.e. with
$\alpha_{l}\left(b_{n}+v\right) \quad \neq \quad b_{n}\left(a_{l}-\eta-1\right)$
For $\mathrm{n}, \mathrm{h}=0,1,2, \ldots ; \mathrm{h}=1, \ldots, \mathrm{~m} ; 1=1, \ldots \ldots, \mathrm{n}$
Further, the contour L runs from $-\omega_{\infty}$ to $+\omega_{\infty}$. Such that the poles of $\Gamma\left(b_{n}-\beta_{n} s\right), \mathrm{h}=1 \ldots \ldots, \mathrm{~m}$; lie to the right of L and the poles $\Gamma\left(1-a_{l}+\alpha_{l} s\right), l=1, \ldots$, n lie to the left of L. The integral (1.4.1) converges, if larg $=1<1 / 2 B \pi \quad(B>0), A$ ≤ 0, where

$$
\begin{equation*}
A=\sum_{j=1}^{p i} a_{j i}-\sum_{j=1}^{q i} \beta_{j i} \tag{7}
\end{equation*}
$$

And

$$
\begin{align*}
& B=\sum_{j=1}^{n} \alpha_{j}-\sum_{j=n+1}^{p i} \alpha_{j i}+\sum_{j=1}^{m} \beta_{j}-\sum_{j=m+1}^{q i} \beta_{j i} \tag{8}\\
& \forall \quad \mathrm{i} \in(1, \ldots, \mathrm{r})
\end{align*}
$$

And the second class of multivariable polynomials given by Srivastava ${ }^{2}$ is defined as follows:
$S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots m_{r}}\left(x_{1}, \ldots, x_{r}\right)=\sum_{K_{1}=0}^{\left[n_{1}, m_{1}\right]} . . \sum_{K_{r}=0}^{\left[n_{1} / m_{1}\right]} \frac{\left(-v_{1}\right)_{m k_{1}}}{k_{1}!} . . \frac{\left(-v_{r}\right)_{m_{2}, k_{r}}}{k_{r}!} \mathrm{A}\left[v_{1}, k_{1} ; . . . v_{r}, k_{r}\right] \mathrm{x}_{1}^{k_{1}} . . . x_{r}^{k_{r}}$

Boundary Value Problem in A Rectangular Plate

In this section we consider a problem in a rectangular plate under certain boundry conditions.
$\mathrm{V}=\mathrm{f}(\mathrm{x}) \quad\left(\frac{a}{2}, \frac{b}{2}\right)$

$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=a, 0<\mathrm{x}<\frac{a}{2}, 0<\mathrm{y}<\frac{b}{2}$
$\left.\frac{\partial u}{\partial x}\right|_{x=0}=\left.\frac{\partial u}{\partial x}\right|_{x=\frac{a}{2}}=0,0<\mathrm{y}<\frac{\mathrm{b}}{2}$,
$\mathrm{V}(x, 0)=0, \quad 0<x<\frac{a}{2}$
$V\left(x, \frac{b}{2}\right)=f(x)=\left[\cos \frac{\pi x}{a}\right] S_{n_{1}, \ldots \ldots \ldots, n_{r}}^{m_{1}, \ldots \ldots . m_{r}}$
$\left[y_{1}\left(\cos \frac{\pi x}{a}\right)^{2 \rho}\right] \mathrm{I}_{p_{i}, q_{i}, r}^{m, n}\left[\left.z\left(\cos \frac{\pi x}{a}\right)^{2 \sigma} \right\rvert\, \begin{array}{l}A^{*} \\ B^{*}\end{array}\right] d x$
Where, $0<x<\frac{a}{2}$ provided that $\operatorname{Re}(\eta)>-1, \sigma>0$

Main Integral

For the proof of main integral we use the following formula due to kumar ${ }^{3}$ as,

$$
\begin{align*}
& \int_{0}^{a / 2}\left(\cos \frac{\pi x}{a}\right)^{\eta} \cos \frac{2 m \pi x}{a} d x=\frac{a\lceil(\eta+1)}{2^{\eta+1}\left(\frac{\eta}{2}+m+1\right)\left(\frac{\eta}{2}-m+1\right)} \\
& \int_{0}^{a / 2}\left(\cos \frac{\pi x}{a}\right)^{\eta} \cos \frac{2 m \pi x}{a} \mathrm{~S}_{n_{1}, \ldots,,_{r}}^{m_{1}, \ldots, m_{r}}\left[y\left(\cos \frac{\pi x}{a}\right)^{2 \rho}\right] \\
& =\frac{a}{\mathrm{I}_{p_{i}}^{m, q_{i} \cdot r}}{ }^{\eta+1} \\
& \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{(-v)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{(-v)_{m_{r} k_{r}}}{k_{r}!} \tag{14}\\
& \mathrm{A}\left[\mathrm{v}_{1}, \mathrm{k}_{1} ; \ldots \mathrm{v}_{\mathrm{r}}, \mathrm{k}\right] \mathrm{I}(\theta)\left(\frac{y}{4 \rho}\right)^{k_{1}} \ldots\left(\frac{y}{4 \rho}\right)^{k_{r}} \ldots
\end{align*}
$$

Where,

Provided
$\operatorname{Re}\left(\eta+\sigma \frac{b_{j}}{\beta_{j}}\right)>-1,|\arg z| \leq \frac{1}{2} \pi B(B>0), A \leq 0$, where
$A=\sum_{j=1}^{p_{i}} \alpha_{j i}-\sum_{j=1}^{q_{i}} \beta_{j i}$
and $B=\sum_{j=1}^{n} \alpha_{j}-\sum_{j=n+1}^{p_{i}} \alpha_{j i}+\sum_{j=1}^{m} \beta_{j}-\sum_{j=m+1}^{q_{i}} \beta_{j i} \forall i \in(1, \ldots, r)$

We shall use the following notation:
$\mathrm{A}^{*}=\left[\left(a_{j}, \alpha_{j}\right)_{1, n}\right],\left[\left(a_{j i}, \alpha_{j i}\right)_{n+1},{ }_{p_{i}}\right]$
$\mathrm{B}^{*}=\left[\left(b_{j}, \beta_{j}\right)_{1, m}\right],\left[\left(b_{j i}, \beta_{j i}\right)_{m+1}, q_{i}\right]$

Solution of the problem

Combining (10), (11) and (12) with the help of the method given Zill ${ }^{4}$ as:
$\mathrm{V}(x, y)=A_{o} y+\sum_{p=1}^{\infty} A_{p} \sinh \frac{2 p \pi y}{a} \cos \frac{2 p \pi x}{a}, 0<\mathrm{x}<\frac{a}{2}, \quad 0<\mathrm{y}<\frac{a}{2}$
For $\mathrm{y}=\frac{b}{2}$ we find that
$V\left(x, \frac{b}{2}\right)=f(x)=\frac{A_{0} b}{2}+\sum_{p=1}^{\infty} A_{p} \sinh \frac{p \pi b}{a}$
$\cos \frac{2 p \pi x}{a}, 0<x<\frac{a}{2}$
Now we use (12) and (17) and interchanging the order of integration which is valid under the given conditions both sides with respect to x from 0 to $\mathrm{a} / 2$ we derive:

$$
\begin{align*}
& \mathrm{A}_{0}=\frac{2}{b \sqrt{\pi}} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \cdots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]}\left(-v_{1}\right)_{m_{1} k_{1}} \ldots\left(-v_{r}\right)_{m_{r} k_{r}} \tag{18}\\
& A\left[v_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right] \quad \mathrm{I}(\theta) \frac{y^{k_{1}}}{k_{1}!} \ldots \frac{y^{k_{r}}}{k_{r}!}
\end{align*}
$$

Where

Where all conditions of (12), (13) and (15) are satisfied.
Making the use (12) and (17) and then we multiplying by $\cos \frac{2 m \pi x}{a}$ both sides and we integrate that result from 0 to $\mathrm{a} / 2$ with respect to x we find :

$$
\begin{align*}
& A_{m}=\frac{1}{2^{\eta-1} \sinh \frac{p \pi b}{a}} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \cdots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} \\
& A\left[v_{1}, k_{1} ; \ldots ; v_{r}, k_{r}\right] \quad \mathrm{I}(\theta)\left(\frac{y}{4 \rho}\right)^{k_{1}} \ldots\left(\frac{y}{4 \rho}\right)^{k_{r}} \tag{20}
\end{align*}
$$

Provided that all conditions of (12), (13) and (15) are satisfied. $\mathrm{v}(x, y)=\frac{2 y}{b \sqrt{\pi}} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \cdots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]}\left[\prod_{j=1}^{r}\left(\left(-v_{j}\right)_{m_{j} k_{j}} \frac{y^{k_{j}}}{k_{j}!}\right)\right]$

$$
\begin{align*}
& A\left[v_{1}, k_{1} ; \ldots ; v_{r}, k_{r}\right]+ \\
& \sum_{m=1}^{\infty} \frac{\sinh \frac{2 m \pi y}{a} \cos \frac{2 m \pi x}{a}}{2^{\eta-1} \sinh \frac{m \pi b}{a}} \sum_{k_{1}=0}^{\left[n_{r} / m_{r}\right]} \cdots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]}\left[\prod_{j=1}^{r}\left(\left(-v_{j}\right) m_{j} k_{j}\left(\frac{y}{4 \rho}\right)^{k_{j}} \frac{1}{k_{j}!}\right)\right] \\
& A\left[v_{1}, k_{1} ; \ldots ; v_{r}, k_{r}\right] I(\theta) \tag{21}
\end{align*}
$$

Where,
Provided that all conditions of (12), (13) and (15) are satisfied.

Expansion formula

With the aid of (12) and (21) and then setting $\mathrm{y}=\mathrm{b} / 2$ we evaluate the expansion formula:

$$
\begin{aligned}
& \left(\cos \frac{\pi x}{a}\right)^{n} S_{n_{1} \ldots \ldots n_{r}}^{m_{1} \ldots m_{r}}\left[y\left(\cos \frac{\pi x}{a}\right)^{2 \rho}\right] \\
& I_{p_{i}, q_{i}: r}^{m, n}\left[\left.z\left(\cos \frac{\pi x}{a}\right)^{2 \sigma} \right\rvert\, \begin{array}{l}
A * \\
B *
\end{array}\right] \\
& =\frac{1}{\sqrt{\pi}} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \cdots \cdots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]}\left[\prod_{j=1}^{r}\left(\left(-v_{j}\right)_{m_{j} k_{j}} \frac{y^{k_{j}}}{k_{j}!}\right)\right] \\
& A\left[v_{1}, k, ; \ldots ; v_{r}, k_{r}\right] \mathrm{I}(\theta)
\end{aligned}
$$

$$
=\sum_{m=1}^{\infty} \frac{\cos \frac{2 m \pi x}{a}}{2^{\eta-1}} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \cdots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]}
$$

$$
\begin{equation*}
\left[\prod_{j=1}^{r}\left|\left(-n_{j}\right)_{m_{j} k_{j}}\left(\frac{y}{4^{\rho}}\right) k_{j} \frac{1}{k_{j}!}\right|\right] \quad \mathrm{A}\left[v_{1}, k_{1}, \ldots . ; v_{r}, k_{r}\right] \mathrm{I}(\theta) \tag{23}
\end{equation*}
$$

Where $0<\mathrm{x}<\mathrm{a} / 2$
Provided the condition stated with (12) (13) and (15) are satiafied.

Conclusion

The I-function is a very general function and has for its particular cases a number of important special functions.

References

1. Chandel R.C.S. and Sengar S., On two boundary value problems, Jnanabha, 31/32, 89-104 (2002)
2. Fox C., The G and H function as symmetrical Fourier kernels: Trans Amer, Math. Soc., 98, 395-429 (1961)
3. Kumar H., Special functions and their applications in modern science and technology, Ph. D. thesis, Barkathullah University, Bhapol, M.P., India, (1993)
4. Saxena S., Formal solution of certain new pair of dual integral equations involving H-function, Proc. Nat. Acad. Sci. India, 52, A, III, 366-375 (1982)
5. Singh Y., Khan M.A. and Khan N.A., Fourier series involving the H -function, Journal of Research (Science), 19(2), 53-65 (2008)
6. Singh, Yashwant, On a Boundray Value Problem and its solution involving products of H -function and general class of polynomiyal, Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine, 3(5), (2012)
7. Srivastava H.M., Gupta K.C. and Goyal S.P., The Hfunctions of one and two variables with applications: (New Delhi and Madras: South Asian Publ.), 11, 18-19 (1982)
8. Srivastava H.M., Garg M., Some integrals involving a general class of polynomials and the multivariable H function, Rev. Roamaine Phys., 32, 685-692 (1987)
9. Srivastava H.M., A multilinear generating function for konhauser set of bioorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 117-183-1 (8.5.1) (1985)
10. Zill D.G., A First Course in Differential Equations With Applications, II ed. Prindle, Weber and Bosten, (1982)
