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Abstract

This paper will put an insight into an application of a solution of boundary value problem in a rectangular plate with the

help of I-function of one variable.
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Introduction

The I-function of one variable is defined by Saxena' and we
shall represent here in the following manner:
I _pn [(“j’“j)l,n]’[(“ji’aji)n+1’1’i]

I 5
1=1,) 0ol 2 =——[10(s)z ds(1)
o\ Vo By b ® 5 B -]

Where @ = +/(=1),2(# 0) isa complex variable and

2> =expls{log| z | +w arg z}] )

In which log Izl represent the natural logarithm of |zl and arg Izl
is not necessarily the principle value. An empty product is
interpreted as unity, Also,

m n
0= pi 3)
II1 TA-b..—p.s) II T(a.—-a.:s
& o T = Fs) L @i = ais)

mn, and pi V i € (1,..... r) are no —negative integers
satisfying 0 < n < p, 0 <m<gq;, Vie (1,..r), o
G=L....ppI=1,......... nand B G=1,....q; I =1,...r) are
assumed to be positive quantities for standardization purpose .
Also a; (j=1,....,psI=1,...... nand by (j=1,.......,q; 1=
1,.....,r) are complex numbers such that none of the points.

S={(bn+v)1 B I h=1imiv=0,1,2,..... (4)

Which are the poles of T (b, — B,S), h = 1,...... m and the
points.

S={(aj—n-Dla =157 =012,.., 5)

Which are the poles of F(l—al +a’ls) coincide with one

another, i.e. with
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al(bn +v) * bn(al -n-1 (6)
Forn,h=0,1,2,...;h=1,....m; 1 =1,.....n
Further, the contour L runs from —W@W to +a)c>o . Such that

the poles of I'(b,, — ﬂns) ,h=1...... , m; lie to the right of L
and the poles [ (1 - a, + a,s) ,1=1,....n lie to the left of

L . The integral (1.4.1) converges, if larg =<2 B n (B>0), A

<0, where
pi qi

A= Z a~ B 0
j=1 =1

And
n pi m qi 8

B:za/_ a/’+zﬂ1_z ﬁji ®)
ji=1 j=n+1 j=1 j=m +1

vV i (1,..... ,T)

And the second class of multivariable polynomials given by
Srivastava® is defined as follows:

[ry,m] [",/’n](_v) (_v)
..... Uik k. .. ki ks
Sp T (s X,) = > D Tm‘% Akv,k ] X
K0 K=0 : .

Boundary Value Problem in A Rectangular Plate

In this section we consider a problem in a rectangular plate
under certain boundry conditions.

V = f(x) (1 2)
272
Insulated Insulated
—_————— ~
| 0 >
V=0

0’u d’u a b

—t —=0a,0<x< —, 0<y<— (10)
dx> 9y’ 2 <3
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du. du.
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ox | o

=0,0<yc< Tb
2 ’ (11)
V(x,0) =0, 0<x< %

% (x,éj - )= [COSQ}S? ........ "
2 R

zx )’ x| A%
{yl (cos—j } I'I’j’;, z(cos—j A dx
a a B *
(12)

Where, 0 < x < £ provided that Re(77) > -1, >0
2

x=0 =

Main Integral

For the proof of main integral we use the following formula due
to kumar® as,

a (q+1)

=
“ 2"“[77+m+1](77—m+1)

a [ny/my] [n'/m,J(_v) (_V)m,.k,

myky

. .

= S
2 i

=0 k,=0

o (14)

kl
kl kl
Yy Yy
A kooooov k] I(8 —_ | —
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Where,

Q=L | | TN b ] (15)
BB N BB s (12'7—m—ﬂq ool ;2’7—m—ﬂq —..4—;19;0:1)
Provided

b 1
Re[f]+6]J>—l, |argzIS—ﬂ'B(B>O),ASO,Where
2

J
b 9
A= ]Elaji _]Elﬂji
n P m 9
and B = ]El a;- j:%+l @+ ]El ,Bj - j:%:ﬁ-l ﬁjl—Vi e(l,...,r)
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We shall use the following notation:
A = [(ajaaj)l,n]a[(ajiaaj,‘),lﬂap’_]

B" = [(b,”:Bj)l,m]’[(bji’ﬁji)mﬂ’% ]

Solution of the problem

Combining (10), (11) and (12) with the help of the method
given Zill* as:

Vo) =Ay+d A sinthT:’y co

SM,OQK% 0<y<g (16)

p=l

For y = % we find that

a7

1% (x,g) =f(x)= Agb +Y A, sinhp—ﬂ-b

p=1 a

2pwx

a
cos ,0<x<5

a

Now we use (12) and (17) and interchanging the order of
integration which is valid under the given conditions both sides
with respect to x from O to a/2 we derive:

2 [ny/m] [n,/m,]
A =—— (=v,) (=), (18)
0 b /7[ klz=0 krz=0 1 1k Ak,
ky k,
o Yoy
A[vl,kl,...,nr,kr] 1(6) kl!....kr!
Where

-1 n

- (E > =Pk, —...—pkr;O';lj[ a0, 11(a;,05),, P, (19)
I(g) :Ip,;],ql | 2
(b, )., 1, /%i)wqi](—g —ph; —...—,Ok,;O‘,lj

Where all conditions of (12) , (13) and (15) are satisfied.

Making the use (12) and (17) and then we

Ccos 2mzx both sides and we integrate that result from O to

multiplying by

a
a/2 with respect to x we find :
[n/my] [n/m.] (_— —
A = 1 & & ( nl )mlkl ( nr )m,k,
. .
27]—1 Sinh Pﬂ'b k=0 k, =0 kl ' kr '

a

K, k,
Al ks k] 1(9)(Lj (Lj (20)
4p 4p

Provided that all conditions of (12), (13) and (15) are satisfied.

e 35
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V(x,y):—b\/; k,Z::o ];0

[n,/m,]
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Alv, k;;.v, k, 1+

- sinhmcos 2m”x[n,/m,] tn,/m1| kj 1

Z 4 4 - I (_V/ )mjkj [LJ

m=1 2 ginh mwb k=0 k=0 |77 4p) k;!
a

Alv, .k, soav  k 11(0) Q1)

Where,

Provided that all conditions of (12), (13) and (15) are satisfied.

Expansion formula

With the aid of (12) and (21) and then setting y = b/2 we

evaluate the expansion formula:

2
Tx ! my...m, TXx g
cos Sn] AAAAA n, y| cos
a a
Tx 20
17 | 2| cos—
04 a

1 [ny/m]

[n,/m,] k,
TRAUYS r y
=— > ... Im| (-v; —
\/; ;0 1;0 {/1[( V_/)m,k/ k_,- 1}}
Alv,,k,;..5v, k. 1 1(8)

2m7wx
COS — Iny/my]

k =0 k,=0

1
(_nj )’"f"f (4%) kj ;

J

{r&
j=1

(23)

} Alv,kssv, k] 1(0)

Where 0 < x < a/2

Provided the condition stated with (12) (13) and (15) are

satiafied.
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Conclusion

The I-function is a very general function and has for its
particular cases a number of important special functions.
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