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Abstract 

In this paper, we have introduced a new class of Pareto distribution i.e. weighted Pareto distribution. Some structural 

properties of the distribution including behavior of probability density function, cumulative distribution function, reliability, 

hazard function, moments, entropy and order statistics are studied and derived. Also, by using different methods of 

estimation we obtain estimate of parameter of distribution. 
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Introduction 

Pareto distribution is a skewed heavy tailed distribution that is 

sometimes used to model the distribution of incomes and is 

named after the economist Vilfredo Pareto. The study of 

weighted distributions can be used for better comprehension of 

standard distributions and provides techniques of extending 

distributions for further flexibility to fit a data set.  

 

There are many applications in which the available data are a 

biased sample instead. Fisher
1
 modeled a biased sample using a 

weight function w(x) ≥ 0, and constructed a weighted 

distribution with a density that is proportional to w(x)* g(x).  

 

Applications of weighted distribution to biased samples in 

various areas including medicine, ecology, reliability, and 

branching processes can be seen in Patil and Rao
2
, Patil et al.

3
, 

Gupta and Kirmani
4
, Gupta and Kundu

5
, Shakhatreh

6
, Dey et 

al.
7
, Das and Kundu

8
, Gupta and Gupta

9
, Gupta and Gupta

10-12
, 

Saghir et al.
13

,
 
Sen and Maiti

14, 
Gupta and Gupta

15,16
, Mandouh 

and Mohamed
17 

and the references therein.  

 

The objective of this paper is twofold: to study the properties of 

the weighted Pareto distribution (WPD) as well as to estimate 

the parameters of the model from frequencist view points. The 

article is organized as follows. Pareto distribution is discussed in 

section 1. Weighted Pareto distribution is introduced in Section 

2. In Section 3 we study reliability function and hazard rate. 

Expressions for the moments, moment generating function and 

characteristics function of the WPD are presented in Section 4. 

In section 5, expression for order statistics and Shannon entropy 

are derived. Section 6 deals with different methods of estimation 

of parameters. Section 7 deals with estimation of Reliability 

function, Hazard function and Shannon’s entropy. The paper 

ends with a brief conclusion in Section 8. 

 

Weighted Pareto Distribution 

The Probability density function of basic Pareto distribution 

with shape parameter θ is given by  
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The probability density function of weighted distribution is 

given by  
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where  xw is a weight function which is non – negative.  

 

Here, we take   ......3,2,1,  kxxw k
 and  xg as the 

probability density function of Pareto distribution with expected 

value  
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Definition: A non- negative continuous random variable X is 

said to follow weighted Pareto distribution with shape parameter 

k and    if its probability density function is given by 
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and the corresponding cumulative density function is given by 
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Special Cases: i. When 0k , the weighted Pareto distribution 

reduces to Pareto distribution. ii. When 1k , the weighted 

Pareto distribution reduces to length or size biased Pareto 

distribution.  

 

Reliability Analysis 

In this subsection, we present the reliability function and the 

hazard function for the proposed weighted Pareto distribution. 

The reliability is defined as the probability that a system will 

survive beyond a specified time and is given by 
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The hazard function is also known as hazard rate or failure rate 

and is given by 
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Statistical Properties 

In this section, we shall discuss properties of Weighted Pareto 

distribution specially moments and its associated measures, 

moment generating function, mode, harmonic mean and order 

statistics. 

 

Moments and associated measures: Suppose X is a random 

variable which follows weighted Pareto distribution with shape 

parameter θ and k, then r
th

 order raw moment of random 

variable X ......3,2,1;
,

rr  is given by 

 r

r XE
,

  

      
rk

k








                     (6) 

Thus, Mean   ;
1




k

k
XE





 

 

  ;
2

2






k

k
XE





 

 

Variance

2

12



















k

k

k

k








  

 

Coefficient of variation is given by C.V.(X)      
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Mode: In order to find mode of weighted Pareto distribution, 

we take the logarithm of its probability density function as 

follow:  
 

      xkkkxf log1log,,log     

 

On differentiating the above equation w.r.t. ‘x’ and equating to 

zero, we get modal value 
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Harmonic mean: The harmonic means of a random variable X 

which follow weighted Pareto distribution is given by 
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Moment generating function: In this sub section, we derived 

the moment generating function of weighted Pareto distribution; 

we begin with the well known definition of moment generating 

function given by 
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Cumulant generating function: The cumulant generating 

function (CGF) of X is obtained as  
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Characteristic function: The characteristic function of a 

random variable following Pareto distribution is given by  
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Order Statistics 

Order statistics make their appearance in many statistical theory 

and practice. We know that if        nXXXX .....,, 321 denotes 

the order statistics of a random sample nXXXX ....,, 321 from 

a continuous population with c.d.f.  xFX  and p.d.f.  xf X  , 

then the pdf of 
thr order statistics  rX  is given by 

 

 
 

   
     1

!!1

! 





r

XXX xGxg
rnr

n
xg

r

 
Now using the p.d.f and c.d.f of weighted Pareto distribution, 

we get the probability density function of r
th

 order statistics of 

weighted Pareto distribution given by 
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The probability density function of smallest order statistics  1X  

is given by 
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The probability density function of largest order statistics is 

given by  
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Shannon’s Entropy: Every probability distribution has some 

kind of uncertainty associated with it and entropy is used to 

measure this uncertainty as well as randomness of a 

probabilistic system. The concept of Entropy was introduced by 

Shannon
18

 as a measure of information, which provides a 

quantitative measure of uncertainty. Let X be a random variable 

which follow weighted Pareto distribution with probability 

density function f(x) given by (2.1), then the Shannon’s entropy 

is given by 
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Hence Shannon entropy is given by 
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Estimation of Parameters 

In this section, we obtain estimate of parameter θ of Weighted 

Pareto distribution using different methods of estimation: 

 

Method of Moments: Moment estimator of parameter θ is 

obtained by equating the sample moment with the 

corresponding population moment. Let ......,, 321 xxx be a 

sequence of random variables from weighted Pareto distribution 

whose probability density function is given by equation (1), then 

Sample moment is given by 

 

xm 
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1  
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 Population moment is given by 
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On equating the above two equations, we get moment estimator 

of parameter  and k given by 
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Maximum Likelihood Estimation: Maximum likelihood 

estimation has been the most widely used method of estimation 

of parameter of a distribution. If a random sample is drawn from 

Weighted Pareto distribution with pdf given by Equation (1), 

then the likelihood function is given by 
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Thus, maximum likelihood estimator of θ and k are given by  
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Method of Minimum Variance Unbiased Estimation: Let a 

random sample is drawn from weighted Pareto distribution then 

the log of likelihood function is given by 
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Hence, Minimum variance unbiased estimator of   is
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And Minimum variance unbiased estimator of k is 
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Estimation of Reliability function, Hazard 

function and Shannon Entropy 
 

On using the invariance property of maximum likelihood 

estimators, the maximum likelihood estimators of reliability 

function is obtained by replacing   and k by̂  and k̂
respectively, i.e 
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Maximum likelihood estimator of Hazard function is 
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Maximum likelihood estimator of Shannon’s entropy is given 

by 
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Conclusion 

In this study, a new distribution called Weighted Pareto 

distribution is introduced. A detailed study on the statistical 

properties of the new distribution is presented. Estimates of 

parameter of Weighted Pareto Distribution are also obtained by 

using three different methods of estimation. Finally, maximum 

likelihood estimator of reliability function, hazard function and 

Shannon’s entropy is obtained. 
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