International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Optimization of a down conversion mixer circuit formation in a hetero structure for increasing of elements density dependences of technological process on porosity of the considered materials and stress, which was induced by mismatch of lattice parameters

Author Affiliations

  • 1Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia

Res. J. Mathematical & Statistical Sci., Volume 10, Issue (2), Pages 1-18, September,12 (2022)

Abstract

We consider an analytical approach to model mass and heat transport (with account nonlinearity) with time and space varying parameters has been introduced. Using the approach leads to prediction of heat and mass transport framework a heterostructure. The approach also gives a possibility do not use cross linking of solution on interfaces framework the heterostructure. Based on the approach we analyzed possibility to increase field-effect heterotransistors density in a down conversion mixer circuit. We obtain, that to increase the density of these transistors one shall manufacture them in a heterostructure, which has appropriate composition. Some appropriate areas of the considered heterostructure must be doped by using ion implantation or diffusion. After the doping it should be done of radiation defects annealing optimization, generated during ion implantation, and infused dopant. We also obtained conditions to decrease mismatch-induced stress, which was generated in layers of heterostructure.

References

  1. Lachin, V.I. and Savelov, N.S. (2001)., Electronics., Rostov-on-Don: Phoenix.
  2. Polishscuk, A. (2004)., Modern Electronics., 12, 8-11.
  3. Volovich, G. (2006)., Modern chips UM3Ch class D manufactured by firm MPS., Modern Electronics, 2, 10-17.
  4. Kerentsev, A., & Lanin, V. (2008)., Constructive-technological features of MOSFET-transistors., Power Electronics, 1, 34-38.
  5. Ageev, O. A., Belyaev, A. E., Boltovets, N. S., Ivanov, V. N., Konakova, R. V., Kudryk, Y., ... & Sachenko, A. V. (2009)., Au-TiB x-n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts., Semiconductors, 43(7), 865-871.
  6. Tsai, J. H., Chiu, S. Y., Lour, W. S., & Guo, D. F. (2009)., High-performance In GaP/GaAs pnp δ-doped heterojunction bipolar transistor., Semiconductors, 43(7), 939-942.
  7. Aleksandrov, O. V., Zakhar’in, A. O., Sobolev, N. A., Shek, E. I., Makoviichuk, M. I., & Parshin, E. O. (1998)., Formation of donor centers upon annealing of dysprosium - and holmium-implanted silicon., Semiconductors, 32(9), 921-923.
  8. Ermolovich, I. B., Milenin, V. V., Red’ko, R. A., & Red’ko, S. M. (2009)., Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing., Semiconductors, 43(8), 980-984.
  9. Sinsermsuksakul, P., Hartman, K., Bok Kim, S., Heo, J., Sun, L., Hejin Park, H., Chakraborty, R., Buonassisi, T. & Gordon, R. G. (2013)., Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer., Applied Physics Letters, 102(5), 053901.
  10. Reynolds, J. G., Reynolds Jr, C. L., Mohanta, A., Muth, J. F., Rowe, J. E., Everitt, H. O., & Aspnes, D. E. (2013)., Shallow acceptor complexes in p-type ZnO., Applied Physics Letters, 102(15), 152114.
  11. Volokobinskaya, N. I., Komarov, I. N., Matioukhina, T. V., Rechetniko, V. I., Rush, A. A., Falina, I. V. & Yastrebov, A. S. (2001)., Investigation of technological processes of manufacturing of the bipolar power high-voltage transistors with a grid of inclusions in the collector region., Semiconductors, 35(8), 1013-1017.
  12. Pankratov, E. L. & Bulaeva, E. A. (2013)., Doping of materials during manufacture p–n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants., Reviews in Theoretical Science, 1(1), 58-82.
  13. Kukushkin, S. A., Osipov, A. V., & Romanychev, A. I. (2016)., Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates., Physics of the solid state, 58(7), 1448-1452.
  14. Trukhanov, E. M., Kolesnikov, A. V., & Loshkarev, I. D. (2015)., Long-range stresses generated by misfit dislocations in epitaxial films., Russian microelectronics, 44(8), 552-558.
  15. Pankratov, E. L., & Bulaeva, E. A. (2015)., On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films., Reviews in Theoretical Science, 3(4), 365-398.
  16. Ong, K.K., Pey, K.L., Lee, P.S., Wee, A.T.S., Wang, X.C. and Chong, Y.F. (2006)., Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing., Appl. Phys. Lett., 89, 172111-172114.
  17. Wang, H.T., Tan, L.S. and Chor, E.F. (2006)., Pulsed laser annealing of Be-implanted GaN., J. Appl. Phys., 98, 094901-094905.
  18. Bykov, Y. V., Eremeev, A. G., Zharova, N. A., Plotnikov, I. V., Rybakov, K. I., Drozdov, M. N., ... & Skupov, V. D. (2003)., Diffusion processes in semiconductor structures during microwave annealing., Radiophysics and Quantum Electronics, 46(8), 749-755.
  19. Tytgat, M., Van Thienen, N., & Reynaert, P. (2015)., A 90-GHz receiver in 40-nm CMOS for plastic waveguide links., Analog Integrated Circuits and Signal Processing, 83(1), 55-64.
  20. Zhang, Y.W. and Bower, A.F. (1999)., Numerical simulation of island formation in a coherent strained epitaxial this film system., Journal of the mechanics and physics of solids, 47, 2273-2297.
  21. Landau, L.D. and Lefshits, E.M. (2001)., Theoretical physics, 7 (Theory of elasticity)., Physmatlit, Moscow.
  22. Kitayama, M., Narushima, T., Carter, W. C., Cannon, R. M., & Glaeser, A. M. (2000)., The Wulff shape of alumina: I, modeling the kinetics of morphological evolution., Journal of the American Ceramic Society, 83(10), 2561-2531.
  23. Cheremskoy, P.G., Slesov, V.V., and Betekhtin, V.I. (1990)., Pore in solid bodies., Energoatomizdat, Moscow.
  24. Gotra, Z.Yu. (1991)., Technology of microelectronic devices., Moscow, Radio and communication.
  25. Fahey, P. M., Griffin, P. B., & Plummer, J. D. (1989)., Point defects and dopant diffusion in silicon., Reviews of modern physics, 61(2), 289.
  26. Vinetskiy, V.L. and Kholodar, Radiative physics of semiconductors., Kiev, Naukova Dumka.
  27. Mynbaeva, M.G., Mokhov, E.N. Lavrent, High-temperature diffusion doping of porous silicon carbide., Techn. Phys. Lett., 34 (9), 13-18.
  28. Sokolov, Yu.D. (1955)., About the definition of dynamic forces in the mine lifting., Applied mechanics, 1, 23-35.
  29. Pankratov, E.L. (2007)., Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion coefficient nonuniformity., Russian microelectronics, 36, 33-39.
  30. Pankratov, E.L. (2008)., Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers., Int. J. Nanoscience, 7, 187-197.
  31. Pankratov, E. L., & Bulaeva, E. A. (2013)., Doping of materials during manufacture p–n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants., Reviews in Theoretical Science, 1(1), 58-82.
  32. Pankratov, E.L. and Bulaeva, E.A. (2012)., Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using over layers., Int. J. Micro-Nano Scale Transp., 3(3), 119-130.
  33. Pankratov, E.L. and Bulaeva, E.A. (2015)., Optimization of manufacturing of emitter-coupled logic to decrease surface of chip., Int. J. Mod. Phys. B, 29 (5), 1550023-1-1550023-12.
  34. Pankratov, E.L. (2017)., On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced Stress., J. Comp. Theor. Nanoscience, 14 (10), 4885-4899.
  35. Pankratov, E.L. and Bulaeva, E.A. (2015)., An approach to increase the integration rate of planar drift heterobipolar transistors., Mat. Sci. Sem. Proc., 34, 260-268.
  36. Pankratov, E.L. and Bulaeva, E.A. (2014)., An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization., Int. J. Micro-Nano Scale Transp., 4, 17-31.
  37. Pankratov, E.L. (2011)., Increasing of the sharpness of p-n-junctions by laser pulses., Nano, 6, 31-40.