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Abstract  

This paper try  to x-ray  the number of factors (k) to be retained in a factor analysis for different sample sizes using the 

method of Principal Component Factor estimation when the number of variables are ten (10). Stimulated data were used for 

ample sizes of 30,50 and 70 and the Akaike Information Criterion (AIC), the Schwarz Information Criterion (SIC) and the 

Hannan Quinne Information Criterion (HQIC)  values were obtained when the number of factors(k) are two, three, and five 

(2,3 and 5). It was discovered that the optimal number of factors to retain using the method of Principal Component Factors 

method of estimation is two (2) from all the sample sizes and also for all the methods considered except for the AIC in which 

the best is when k=3 follows by k=2 and k=5 respectively of sample thirty (30). Hence, conclusion is drawn that for the three 

sample sizes considered, the optimal number of factors to retain is 2.    

 

Keywords: Factor Analysis, Factor Rotation, Principal Component Factors Method, Akaike, Schwarz, and Hannan Quinne 

Information Criteria. 
 

Introduction 

Factor analysis is a collection of methods used to examine how underlying constructs influences the responses on a number of 

measured variables. Factor analysis is based on the common factor model illustrated in figure 1.  This model proposes that each 

observed response (measure 1 through measure 5) is influenced partially by underlying common factors (factor 1 and factor 2) and 

partially by underlying unique factors (E1 through E5). The strength of the link between each factor and each measure varies, such 

that a given factor influences some measures more than others
1
.                   

 

                                           Measure 1  ⟵ − − − E1  
                    

                Factor 1             Measure 2  ⟵ − − − E2  
 

                                                  Measure 3  ⟵ − − − E3  
 

                     Factor 2             Measure 4 ⟵ − − − E4  
 

                                           Measure 5  ⟵ − − − E5  
 

Figure-1 

Factor analysis is based on the common factor model 
 

Factor analysis is performed by examining the pattern of correlations (or covariance) between the observed measures. Measures 

that are highly correlated (either positively or negatively) are likely influenced by the same factors, while those that are not highly 

correlated are likely influenced by different factors. 
 

In the factor analysis, we represent the variables  y1, y2, … , yp as a linear combination  of  a few random variables  f1 , f2 , …, fm 

(m<p) called factors. The factors are underlying constructs or latent variables that ‘generate’ the y’s.  Like the original variables, 

the factors vary from individual to individual; but unlike the variables, the factors cannot be measured or observed 
2
. The existence 

of these hypothetical variables is therefore open to question. If the original variables y1, y2,  …, yp are at least moderately 

correlated, the basic dimensionality of the system is less than p. The goal of factor analysis is to reduce the redundancy among 
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variables by using a smaller number of factors. Factor analysis can be viewed as an extension of principal components analysis. It 

related to the principal components analysis in that both seek a simpler structure in a set of variables but they differ in many 

respects. Both of them have the goal of reducing dimensionality. Because the objectives are similar, many authors discuss 

principal components analysis as another type of factor analysis. 

 

The Mathematical Model for factor structure: Suppose that the multivariate system consist of a random sample y1, y2, …,yn 

from a homogeneous population with mean μ and covariance matrix Σ. The factor analysis model expresses each variable as a 

linear combination of underlying common factors  f1 , f2 , … , fm, with an accompanying error term to account for that part of the 

variable that is unique  (not in common with the other variables). 

For  y1, y2,… ,yp in any observation vector  y, the model is as follows 

Y1 − μ
1

=  𝜆11f1 + ⋯ +  𝜆1m f𝑚 + 𝜀1  

Y2 − μ
2

=  𝜆21f1 + ⋯ + 𝜆2m f𝑚 +  𝜀2 

                                            ∶                      (1.1.1) 

Yp − μ
p

=  𝜆p1f1 + ⋯ +  𝜆pm f𝑚 +  𝜀𝑝  

 

ideally, m should be substantially smaller than p. 

fi = j-th common-factor variates. 𝜀𝑖 = i-th specific factor variates. 

The coefficients 𝜆ii  are called loadings and serve as weights showing how each 𝑦𝑖  individually depends on the f’s.  𝜆ij  indicates the 

important of  j-th factor 𝑓j to the i-th variable  𝑦i  and can be used in interpretation of  𝑓j. 

 

It is assumed that for  j = 1,2, …, m 

E fj = 0,  Var(fj) = 1 and  Cov(fj , fk ) = 0, j ≠ k.  

The  assumptions for  𝜀𝑖 , 𝑖 =  1, 2, … , 𝑝, are the same, except that we must allow each 𝜀𝑖  to have a different variance, since it 

shows the residual part of 𝑦𝑖  that is not in common with the other variables. Hence, we assume that   

E εi = 0, Var(ε
i
) =  ψ

i
, and Cov(ε

i
, εk) = 0, i ≠ k. 

 

Also, 

Cov εi , fj = 0 for all i and j 

We refer to ψ
i
 as the specific variance. Since E(yi − μ

i
) = 0, we need E(fj) = 0, 𝑗 = 1,2, . . , 𝑚. 

The assumption 𝐶𝑜𝑣 fj , fk = 0 is made for parsimony in expressing the y’s as functions of few factors as possible. 

The assumptions  Var(fj) = 1, Var(ε
i
) =  ψ

i
, Cov(fj , fk) = 0, and Cov εi , fj = 0 yield a simple expression for variance of  yi. 

 𝑉𝑎𝑟 yi = λi1
2 + λi2

2 + ⋯ + λim
2 + ψ

i
                                                 (1.1.2) 

 

Note that the assumption Cov εi , εk = 0 implies that the factors account for all the correlations among the y’s, that is, all that the 

y’s have in common. Thus the emphasis in factor analysis is on modelling the covariance or correlation among the y’s
3
. 

For matrix version of the model in equation (1.1.1) above;  

 

Let, 

f I = (f1 , f2, … , fm ),    yI = (y1 , y2, … , yp)   

εI = (ε1, ε2, … , εp),    μI = (μ
1

, μ
2

 , … , μ
p

), 

and       Λ =  

𝜆11 . . 𝜆1m

: : :
𝜆p1 . . 𝜆pm

 . 

 

Then, the factor model can be written as 
 𝑦 − 𝜇 =  Λ𝑓 + ε.                                                                               (1.1.3) 

 

Hence,  

E fj = 0,  Var(fj) = 1, i = 1,2, … , m and  Cov(fj , fk) = 0, j ≠ k   

 

become   Var(F) = I.  
E(ε

i
) = 0, i = 1,2, … , p  becomes 𝐸 ε = 0;  Var(ε

i
) = ψ

i
, i = 1,2, … , p, and Cov(ε

i
, εk) = 0, i ≠ k  become 
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𝐶𝑜𝑣 ε =  ψ =   

ψ
1

0 … 0

0 ψ
2 . . . 0

:
0

:
0

: :
… ψ

p

  

and   

Cov εi , fj = 0, for i and j  becomes  Cov ε, f = 0. 

 

The notation Cov ε, f   indicates a rectangular matrix containing the covariance of the f’s  with the ε’s.  Cov ε, f  =

 

 
 
 
 
 
σf1ε

1
σf1ε2 . . . σf1εp

σf2ε1 σf2ε
2

. . . σf2εp

:
:

σfm ε1

:
:

σfm ε2

:
:

… σfm εp 
 
 
 
 

 

 

Since  the emphasis in factor analysis is on modelling the covariance among the y’s, we wish to  express the 
1

2
𝑝(𝑝 − 1) covariance  

( and the p variances) of the variances  y1 , y2, … , yp  in term of a simplified structure involving the pm loadings 𝜆ij   and the p-

specific variances ψ
i
; that is, we wish to express Σ in terms of  Λ and  ψ. Since 𝜇 does not affect variances and covariances of y, 

we have  

 Σ = Cov y = Cov(Λf + ε) 

 

From Cov ε, f  = 0;  Λf and  ε are uncorrelated; therefore, the covariance matrix  of their sum is the sum of their covariance 

matrices: 

 Σ = Cov y = Cov Λf + ε =  Cov Λf)  + Cov(ε  

= ΛCov(f)ΛI + ψ 

= ΛIΛI + ψ  

= ΛΛI + ψ                                        (1.1.4) 

 

If  Λ has only a few columns, say two or three, then Σ = ΛΛI + ψ represents a simplified structure for Σ, in which the covariances 

are modelled by 𝜆ij ’s alone since  ψ is diagonal. 

 

Also we can find the covariances of y’s with the f’s in terms of the 𝜆’s. the loading themselves represent covariances of the 

variables with the factors, it then implies that Cov 𝑦i , 𝑓j = 𝜆ij ; i = 1,2,…, p and j = 1,2,…, m. Since 𝜆ij  is the (ij)th elements of  Λ, 

we then have that  

Cov y, f = Λ                                                                  (1.1.5) 

 

If standardized variables are used, equation (1.2.5) is replaced by 𝑝p =  ΛΛI + ψ, and the loadings become correlations: 

Cov 𝑦i , 𝑓j = 𝜆ij                                                           (1.1.6) 

 

Partitioning the variance of  𝑦i  into a component due to the common factors called the communality, and a component unique to 

𝑦i , called the specific variance
4
. 

Introducing communality, 𝐶𝑜𝑣 𝑌𝑖 = ΛΛI + Ψ can be written as 

𝑉𝑎𝑟 𝑌𝑖𝑗  = Λ𝑖1
2 + … + Λ𝑖𝑚

2 + Ψ𝑖
2;  𝐶𝑜𝑣 𝑌𝑖𝑗 , 𝑌𝑖𝑘  =  Λ𝑖1Λ𝑘1 +  … + Λ𝑗𝑚 Λ𝑘𝑚  

 

and  𝐶𝑜𝑣 𝑌𝑖 , 𝐹𝑖 = Λ can be written as 𝐶𝑜𝑣 𝑌𝑖𝑘 , 𝑋𝑖𝑘  = Λ𝑗𝑘 . 

 

Communality is the portion of the variance of the variable contributed by the m common factors. 

Suppose the  ith  communality is  h𝑖
2, then 

 𝜎ii = Var 𝑦i =  λi1
2 + λi2

2 + ⋯ + λim
2  + ψ

i
            

= hi
2 + ψ

i
      

= communality +  specific variance      

where, communality =  hi
2 =   λi1

2 + λi2
2 + ⋯ + λim

2  , and specific variance  = ψ
i
. 
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The i-th communality is the sum of square of the loading of the ith variable on the m common factor. When the number of factors 

m > 1, there are multiple factor loadings that generate the same covariance matrix. 

 

The loading in the model (1.1.3) can be multiply by an orthogonal matrix without impairing their ability to reproduce the 

covariance matrix in Σ = ΛΛI + ψ. 
Let 𝛽 be any mxm orthogonal matrix. If we let Λ∗ = Λ𝛽 and f ∗ = 𝛽I𝑓, then f ∗ has the same statistical properties as  f  since 

E(f ∗) = 𝐸(𝛽I𝑓) = 𝛽I𝐸 𝑓 = 0. 
𝐶𝑜𝑣(f ∗) = 𝐶𝑜𝑣(𝛽I𝑓) = 𝛽I𝐶𝑜𝑣 𝑓 𝛽 = 𝛽I𝛽 = Imxm  

Λ and ΛI yield the same covariance because ΛΛI = Λ∗Λ∗I .  The factor model  𝑦 − 𝜇 =  Λ𝑓 + ε =  Λ𝛽𝛽I𝑓 + ε 

     = Λ∗f ∗ + ε,  produces the same covariance matrix Σ,  

since Σ = ΛΛI + ψ =  Λ𝛽𝛽IΛ + ψ = Λ∗Λ∗I + ψ. 
 

The Principal Components Method 

The first technique we consider is commonly called the principal component method. The covariance matrix Σ is represented by 

the spectral decomposition
5
. If Σ has eigenvalues 𝜆i  with  𝜆1 ≥  𝜆2 ≥ ⋯ ≥ 𝜆p ≥ 0 and corresponding eigenvector 𝑒i, then, 

 Σ = 𝜆1𝑒1𝑒1
𝐼 + 𝜆2𝑒2𝑒2

𝐼 + ⋯ + 𝜆p𝑒p𝑒𝑝
𝐼   =  Λ(pxp )Λ(pxp )

I ;  

 

where Λ(pxp ) = ( 𝜆1𝑒1 , 𝜆2𝑒2, … ,  𝜆p𝑒p). Because this matrix product form represents the covariance matrix perfectly, there is 

no uniqueness. However, this for is not useful for factor analysis because the number of factors should be less than the number of 

variables. It is desirable to have a model that explain the covariance with small number of common factors and leave the 

differences between two as uniqueness. Suppose the number of variables is p and the number of factors is m. then we find m such 

that the last p-m eigenvalues are so small that we can ignore the contribution of  Σ = 𝜆m+1𝑒m+1𝑒𝑚+1
𝐼 + 𝜆𝑚+2𝑒𝑚+2𝑒𝑚+2

𝐼 + ⋯ +
𝜆p𝑒p𝑒𝑝

𝐼  to Σ. We then have, 

  Σ = 𝜆1𝑒1𝑒1
𝐼 + 𝜆2𝑒2𝑒2

𝐼 + ⋯ + 𝜆m𝑒m𝑒𝑚
𝐼 + 𝑑𝑖𝑎𝑔( Ψ1, Ψ2 , … , Ψ𝑝)    

  = Λ(pxm )Λ(pxm )
I +  Ψ ;  

where  Λ(pxp ) = ( 𝜆1𝑒1,  𝜆2𝑒2, … ,  𝜆m𝑒m ) and Ψ1, Ψ2 , … , Ψ𝑝  are very small. This representation is principal components 

solution. 

 

Because the units of the variables of the original data may be different, standardization is required for a factor model. That 

is, 𝑍𝑖𝑗 =
(𝑦𝑖𝑗 −𝑦 𝑗 )

 𝑠𝑗𝑗
;        i = 1,…, m and j = 1, … , p, is required because some variables with large variances influences the 

determination of factor loading too much. In this case, the sample covariance matrix, S, becomes the sample correlation matrix, R. 

For the principal components method, the estimate of each factor loading is fixed independent of the number of factors. 

If  Λ =  𝜆 1𝑒 1,  𝜆 2𝑒 2, … ,  𝜆 𝑞𝑒 𝑞) for m = q, and  

Λ =  𝜆 1𝑒 1,  𝜆 2𝑒 2, … ,  𝜆 𝑞𝑒 𝑞) for m = n, q < n,  

 

then    𝜆 1𝑒 1,  𝜆 2𝑒 2, … ,  𝜆 𝑚𝑒 𝑚) are the same for both cases. 

 

One way of determining the number of factors m is to consider the residual matrix    𝑆 − (Λ Λ 
I

+ Ψ). If m’s are chosen to ensure 

that the residual matrices are small enough, the least number of m among all m’s that satisfy the small residual matrix condition is 

appropriate. The sum of squared entries of   

𝑆 −  Λ Λ 
I

+ Ψ ≤ 𝜆 m+1
2 + 𝜆 m+2

2 + ⋯ + 𝜆 p
2 .  

 

This means that if the right hand side of the inequality is small, then the left side should also be small. 

The contribution to the total sample variance from the k-th common factor is  Λ 1k
2

+ Λ 2k
2

+ ⋯ + Λ pk
2

=   𝜆 𝑘𝑒k 

I

  𝜆 𝑘𝑒k = 𝜆 𝑘 . 
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Therefore, the proportion of the total sample variance due to the k-th factors equal   
𝜆 𝑘

𝑆11 +𝑆22 +⋯+𝑆𝑝𝑝
,  for a sample covariance 

matrix, S, and  
𝜆 𝑘

𝑃
 for a sample correlation matrix R. From this proportion, m is chosen to obtain the appropriate high proportion. 

 

Information Criteria: The necessity of introducing the concept of model evaluation has been recognized as one of the important 

technical areas and the problem is posed on the choice of the best approximating model among a class of competing models by a 

suitable model evaluation criterion given a data set. Model evaluation criteria are figures of merit, or performance measures for 

competing models. Factor analysis can be characterized as multivariate technique for analyzing the internal relationship among a 

set of variables. Based on the usual factor analysis model, choosing a model with too few parameters can involve making 

unrealistically simple assumptions and lead to high bias, poor prediction, and missed opportunities for insight. Such models are not 

flexible enough to describe the sample or the population well. A model with too many parameters can fit the observed data very 

well, but be too closely tailored to it; such models may generalize poorly. Penalized-likelihood information criteria, such as 

Akaike’s information criterion (AIC), the Schwarz’s information criterion (SIC),  the  Hannan-Quinn information criterion (HQIC) 

and so on are widely used for model selection
6
. The comparison of the models using information criterion can be viewed as 

equivalent to a likelihood ratio test and understanding the differences among the criteria may make it easier to compare the results 

and to use them to make informed decisions. 

 

AKAIKE’S information criterion is probably the most relevant and famous as for the comparison and selection between different  

models and is constructed on log likelihood  

AIC = −2𝑙𝑜𝑔𝑚𝑎𝑥 𝐿 + 2𝑘 

 

where L denotes the likelihood function of the factor model and k is the number of the model’s parameter/factors. 𝑙𝑜𝑔𝑚𝑎𝑥 𝐿(𝑘) =

 −
1

2
𝑁 𝑙𝑜𝑔 Σ𝑘  + 𝑡𝑟Σ𝑘

−1𝑆 , where S denotes the sample covariance matrix of Y and Σ𝑘 = Λ𝑘Λ𝑘
−1 + ψ2; Λ𝑘  is the matrix factor of 

factor loading. The first term can be interpreted as a goodness-of-fit measurement, while the second gives a growing penalty to 

increasing numbers of parameters according to the parsimony principle.  In the choice of model, a minimization rule is used to 

select the model with the minimum Akaike information criterion value.  

 

Still in the likelihood based procedures, proposed the alternative information criterion given by 

𝑆𝐼𝐶 = −𝑙𝑜𝑔𝑚𝑎𝑥 𝐿 +
1

2
𝑘 log 𝑁. 

 

Unlike the AIC. SIC considers the number of N of observations and is therefore less favourable to factors inclusion
7
.    

 

Finally, the third criterion is the Hannan-Quinn information criterion (HQC); it is a criterion for model selection. It is an 

alternative to Akaike information criterion (AIC) and Bayesian information criterion (BIC). It is given as 𝐻𝑄𝐼𝐶 = −𝑙𝑜𝑔𝑚𝑎𝑥 𝐿 +
2𝑘 log log 𝑁 

where k is the number of  parameters, N is the number of observations. 

 

Comparison of AIC and SIC after Rotation at different sample sizes and different retained number of 

factors (k)                     
 

For n=30, p =10 and k = 2 

Table-1 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax Loadings 

I II I II I II I II 

-0.1071 -0.1134 -0.1069 -0.1136 -0.1071 -0.1134 -0.1077 -0.1128 

-0.0623 0.6989 -0.0632 0.6988 -0.0621 0.6989 -0.0585 0.6992 

-0.4361 0.2037 -0.4364 0.2031 -0.4360 0.2038 -0.4350 0.2061 

0.5881 0.1466 0.5879 0.1474 0.5882 0.1464 0.5889 0.1434 

0.5502 -0.3825 0.5508 -0.3818 0.5501 -0.3827 0.5482 -0.3855 

-0.7496 -0.2086 -0.7493 -0.2096 -0.7497 -0.2084 -0.7508 -0.2045 

0.2759 0.6490 0.2750 0.6494 0.2761 0.6489 0.2794 0.6475 

0.0533 -0.5654 0.0541 -0.5653 0.0531 -0.5654 0.0502 -0.5657 

0.0847 0.3039 0.0842 0.3040 0.0848 0.3039 0.0863 0.3035 

0.6170 -0.1309 0.6172 -0.1301 0.6170 -0.1311 0.6163 -0.1343 
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Table-2 

Factor Rotation Matrix 

Varimax 

 Factor I      Factor II 

Factor  I          

Factor  II 

0.9998        0.0207 

-0.0207       0.9998 

  

Equamax 

 Factor I      Factor II 

Factor  I          

Factor  II 

0.9998         0.0220  

-0.0220        0.9998 

 

Quartimax 

 Factor I      Factor II 

Factor  I          

Factor  II 

0.9998        0.0204 

-0.0204       0.9998 

 

Orthomax  

 Factor I      Factor II 

Factor  I          

Factor  II 

0.9999        0.0152 

-0.0152       0.9999 

 

Table-3 

Information Criteria 

Information Criteria Values 

Log Likelihood -121.3815 

Akaike  246.7630 

Schwarz 122.8586 

Hannan Quinne 122.1820 

For  n = 30 , p = 10 and  k = 3 

Table-4 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax  Loadings 

Factor 

I 

Factor     

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

0.1884 -0.1966 0.6330 0.2074 -0.1990 0.6262 0.1833 -0.1959 0.6347 0.2250 -0.2095 0.6167 

-0.1712 0.7448 -0.2466 -0.1780 0.7458 -0.2385 -0.1695 0.7445 -0.2487 -0.1800 0.7504 -0.2223 

-0.1441 0.1444 0.6843 -0.1231 0.1420 0.6889 -0.1496 0.1451 0.6830 -0.1010 0.1327 0.6943 

0.3710 0.1806 -0.5867 0.3531 0.1824 -0.5970 0.3756 0.1800 -0.5839 0.3360 0.1888 -0.6049 

0.4865 -0.3997 -0.2358 0.4788 -0.3991 -0.2520 0.4885 -0.3998 -0.2315 0.4681 -0.3985 -0.2722 

-0.7914 -0.1579 0.1001 -0.7881 -0.1577 0.1236 -0.7922 -0.1581 0.0939 -0.7851 -0.1544 0.1453 

0.3644 0.6172 0.0802 0.3672 0.6166 0.0713 0.3636 0.6173 0.0824 0.3735 0.6131 0.0689 

-0.0903 -0.5341 -0.2733 -0.0990 -0.5331 -0.2724 -0.0880 -0.5344 -0.2735 -0.1110 -0.5284 -0.2769 

0.2452 0.2562 0.2904 0.2541 0.2550 0.2838 0.2428 0.2566 0.2921 0.2644 0.2492 0.2795 

0.7108 -0.1947 0.0555 0.7120 -0.1954 0.0331 0.7104 -0.1944 0.0614 0.7113 -0.2005 0.0085 
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Table-5 

Factor Rotation Matrix 

Varimax 

 Factor I      Factor II      Factor  III 

Factor  I          

Factor  II 

Factor  III 

0.8974        -0.0039       -0.4411 

0.0605         0.9916        0.1143 

0.4370        -0.1293         0.8901 

Equamax 

 Factor I      Factor II      Factor  III 

Factor  I          

Factor  II 

Factor  III 

0.8836        -0.0029       -0.4683 

0.0648         0.9911         0.1160 

0.4638        -0.1329         0.8759 

Quartimax 

 Factor I      Factor II      Factor  III 

Factor  I          

Factor  II 

Factor  III 

0.9009        -0.0041        -0.4340 

0.0593         0.9917          0.1137 

0.4299        -0.1282          0.8937 

Orthomax 

 Factor I      Factor II      Factor  III 

Factor  I          

Factor  II 

Factor  III 

0.8688        -0.0019       -0.4951 

0.0752         0.9889         0.1282 

0.4893     -0.1486         0.8593     
 

Table-6 

Information Criteria 

For n=30, p =10, and k = 5. 

Table-7 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.0130 -0.1314 0.0082 0.0204 0.8806 0.0033 -0.1506 0.1926 0.0135 0.8564 

0.0217 -0.0207 0.6813 0.1222 -0.5070 -0.200 -0.1429 0.5348 0.0446 -0.6544 

0.0996 -0.8240 0.1610 0.1049 0.0759 0.1045 -0.8403 0.0295 0.1033 0.0537 

0.2359 0.6938 0.1385 0.0143 -0.1348 0.2117 0.6576 0.2530 -0.0177 -0.1817 

0.2348 0.3869 -0.6962 0.2811 -0.0546 0.2726 0.5192 -0.5415 0.3544 0.0944 

-0.8738 -0.1520 -0.1496 -0.0278 -0.0121 -0.8570 -0.1260 -0.2421 -0.0054 0.0312 

0.2094 0.3071 0.6165 0.3372 0.3265 0.1514 0.1733 0.7736 0.2496 0.1578 

0.0563 0.1216 -0.1389 -0.7811 0.1033 0.0686 0.1454 -0.1736 -0.7623 0.1448 

-0.0232 0.0211 -0.1228 0.7523 0.1179 -0.0232 0.0412 0.0059 0.7597 0.1284 

0.8521 -0.1092 -0.2026 -0.0773 0.0108 0.8669 -0.0607 -0.1551 -0.0502 0.0587 

                                        Quartimax Loadings                          Orthomax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.0134 -0.0059 -0.1360 0.0200 0.8799 0.0061 -0.1228 0.1794 0.0228 0.8634 

0.0222 0.6896 -0.0153 0.1229 -0.4956 0.0043 -0.1060 0.5575 0.0920 -0.6376 

0.0970 0.1631 -0.8240 0.1049 0.0744 0.1079 -0.8343 0.0859 0.1085 0.0683 

0.2385 0.1374 0.6942 0.0142 -0.1292 0.2195 0.6744 0.1942 0.0024 -0.1840 

0.2354 -0.6974 0.3834 0.2805 -0.0644 0.2463 0.4723 -0.6217 0.3093 0.0754 

-0.8746 -0.1475 -0.1494 -0.0271 -0.0145 -0.8651 -0.1464 -0.1970 -0.0287 0.0225 

0.2120 0.6091 0.3072 0.3373 0.3383 0.1767 0.2392 0.7233 0.3088 0.1776 

0.0559 -0.1407 0.1203 -0.7813 0.1011 0.0668 0.1344 -0.1309 -0.7748 0.1341 

-0.0225 -0.1253 0.0200 0.7522 0.1163 -0.0301 0.0410 -0.0600 0.7565 0.1318 

0.8514 -0.2034 -0.1133 -0.0783 0.0060 0.8607 -0.0717 -0.1799 -0.0580 0.0594 

Information Criteria Values 

Log Likelihood -121.1655 

Akaike  246.3310 

Schwarz 123.3812 

Hannan Quinne 122.1820 
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Table-8 

Factor Rotation Matrix 

Varimax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7775 

0.0724 

0.3688 

-0.4536 

-0.2201 

0.6024 

-0.0338 

-0.5222 

0.3725 

0.4739 

-0.1322 

0.8097 

-0.1608 

-0.4067 

0.3682 

0.1139 

0.5609 

0.3364 

0.6938 

-0.2793 

-0.0473 

-0.1529 

0.6725 

0.0937 

0.7165 

Equamax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7708 

0.0133 

0.3787 

-0.4394 

-0.2631 

0.6234 

-0.1891 

-0.4930 

0.4389 

0.3741 

0.0535 

0.7936 

-0.0264 

-0.2382 

0.5567 

0.1149 

0.4611 

0.3586 

0.7281 

-0.3398 

-0.0350 

-0.3488 

0.6958 

0.1658 

0.6045 

Quartimax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7796 

0.0738 

0.3676 

-0.4521 

-0.2175 

-0.1351 

0.8118 

-0.1704 

-0.4097 

0.3547 

0.5992 

-0.0298 

-0.5277 

0.3719 

0.4726 

0.1131 

0.5614 

0.3356 

0.6939 

-0.2792 

-0.0471 

-0.1394 

0.6669 

0.0895 

0.7250 

Orthomax. 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7688 

0.0423 

0.3725 

-0.4569 

-0.2443 

0.6257 

-0.1276 

-0.4850 

0.4168 

0.4281 

-0.0369 

0.7758 

-0.0466 

-0.3179 

0.5418 

0.1207 

0.5257 

0.3539 

0.7018 

-0.3021 

-0.0387 

-0.3222 

0.7061 

0.1545 

0.6101 
 

Table-9 

Information Criteria 

Information Criteria Values 

Log Likelihood -126.6525 

Akaike  263.3050 

Schwarz 130.3453 

Hannan Quinne 128.3467 

For  n =50 , p =10, and k =2. 

 

Table-10 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax Loadings 

I II I II I II I II 

0.5129 0.5339 0.5036 0.5427 0.5150 0.5318 0.4984 0.5474 

-0.7218 0.0492 -0.7226 0.0367 -0.7216 0.0520 -0.7229 0.0298 

-0.0903 0.5106 -0.0991 0.5090 -0.0882 0.5110 -0.1039 0.5080 

-0.1462 -0.0546 -0.1452 -0.071 -0.1464 -0.0540 -0.1447 -0.0585 

-0.1807 -0.3279 -0.1750 -0.3310 -0.1820 -0.3272 -0.1718 -0.3326 

0.4581 -0.1704 0.4610 -0.1625 0.4574 -0.1723 0.4625 -0.1581 

0.7001 0.0867 0.6985 0.0988 0.7004 0.0839 0.6975 0.1054 

0.1276 -0.6377 0.1386 -0.6354 0.1251 -0.6382 0.1446 -0.6341 

-0.4663 0.2947 -0.4713 0.2866 -0.4651 0.2966 -0.4740 0.2822 

0.0592 0.5613 0.0495 0.5622 0.0615 0.5610 0.0442 0.5627 
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Table 11 

Factor Rotation Matrix 

Varimax 

 Factor I Factor II 

Factor  I 

Factor  II 

0.9816 

-0.1909 

0.1909 

0.9816 

Equamax 

 Factor I Factor II 

Factor  I 

Factor  II 

0.9782 

-0.2079 

0.2079 

0.9782 

Quartimax 

 Factor I Factor II 

Factor  I 

Factor  II 

0.9824 

-0.1870 

0.1870 

0.9824 

Orthomax  

 Factor I Factor II 

Factor  I 

Factor  II 

0.9761 

-0.2171 

0.2171 

0.9761 

 

Table-12 

Information Criteria 

Information Criteria Values 

Log Likelihood -249.2975 

Akaike 502.5950 

Schwarz 250.9965 

Hannan Quinne 250.2182 

 

For n =50 , p =10, and k =3. 

Table-13 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax  Loadings 

Factor 

I 

Factor     

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

0.7793 0.2831 0.1743 0.7862 0.2798 0.1465 0.7770 0.2844 0.1821 0.7888 0.2826 0.1252 

-0.7613 0.2713 0.1037 -0.7560 0.2719 0.1359 -0.7627 0.2708 0.0944 -0.7529 0.2653 0.1635 

0.1297 0.4460 0.2557 0.1406 0.4432 0.2547 0.1264 0.4469 0.2558 0.1461 0.4406 0.2561 

0.2092 -0.2878 0.6528 0.2337 -0.2945 0.6414 0.2021 -0.2856 0.6560 0.2557 -0.3016 0.6296 

-0.1496 -0.3524 0.1878 -0.1431 0.3539 0.1901 -0.1514 -0.3520 0.1872 -0.1349 -0.3573 0.1897 

0.2671 -0.1720 -0.3931 0.2511 -0.1688 -0.4049 0.2716 -0.1729 -0.3896 0.2391 -0.1618 -0.4149 

0.5452 0.0338 -0.4638 0.5268 0.0372 -0.4843 0.5503 0.0330 -0.4577 0.5109 0.0469 -0.5002 

0.0621 -0.7155 0.0304 0.0615 -0.7159 0.0211 0.0625 -0.7154 0.0333 0.0662 -0.7157 0.0094 

-0.0835 0.1749 0.06855 -0.0564 0.1684 0.6899 -0.0914 0.1768 0.6840 -0.0353 0.1588 0.6936 

0.1308 0.5753 -0.0469 0.1303 0.5754 -0.0464 0.1308 0.5753 -0.0472 0.1255 0.5768 -0.0427 
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Table-14 

Factor Rotation Matrix 

Varimax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.8690 

0.1335 

0.4765 

0.0496 

0.9346 

-0.3524 

-0.4924 

0.3298 

0.8055 

Equamax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.8493 

0.1486 

0.5066 

0.0526 

0.9310 

-0.3612 

-0.5253 

0.3333 

0.7829 

Quartimax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.8744 

0.1289 

0.4678 

0.0490 

0.9357 

-0.3494 

-0.4828 

0.3285 

0.8118 

Orthomax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.8318 

0.1537 

0.5334  

0.0648 

0.9274 

-0.3684 

-0.5513 

0.3411 

0.7614 
 

Table-15 

Information Criteria 

Information Criteria Values 

Log Likelihood -250.6500 

Akaike  507.3000 

Schwarz 253.1985 

Hannan Quinne 252.0311 

For n=50, p =10, and k = 5. 

Table-16 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.7725 0.3589 -0.0099 0.1997 -0.0544 0.7737 0.3583 -0.0267 0.1899 -0.0690 

-0.8141 0.3238 0.0526 0.0628 -0.0731 -0.8130 0.3242 0.0684 0.0725 -0.0616 

-0.0067 0.2653 0.1122 0.3080 -0.6098 -0.0105 0.2625 0.1112 0.3079 -0.6111 

0.0500 -0.1042 -0.0054 0.8633 -0.0243 0.0598 -0.1035 -0.0095 0.8627 -0.0251 

-0.0171 0.0566 0.0231 0.0798 0.8462 -0.0019 0.0612 0.0224 0.0804 0.8460 

0.1127 0.1624 -0.8264 0.1100 0.0973 0.0989 0.1618 -0.8292 0.1055 0.0942 

0.5227 -0.0854 -0.3227 -0.2938 -0.2353 0.5086 -0.0878 -0.3317 -0.3012 -0.2433 

0.0584 -0.8830 0.0700 0.0908 0.0049 0.0604 -0.8828 0.0696 0.0913 0.0086 

0.0119 0.2134 0.6254 0.3316 0.2042 0.0319 0.2157 0.6233 0.3335 0.2029 

0.2532 0.4000 0.3425 -0.3577 -0.1310 0.2539 0.3932 0.3383 -0.3601 -0.1368 

                                        Quartimax Loadings                                Orthomax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.7721 0.3590 -0.0055 0.2022 -0.0507 0.7696 0.3681 -0.0420 0.1753 0.0909 

-0.8143 0.3238 0.0482 0.0604 -0.0760 -0.8159 0.3123 0.0811 0.0873 0.0483 

-0.0058 0.2660 0.1124 0.3080 -0.694 -0.0198 0.2564 0.1083 0.3021 0.6168 

0.0475 -0.1045 -0.0046 0.8634 -0.0241 0.0762 -0.1039 -0.0122 0.8610 0.0347 

-0.0210 0.0554 0.0231 0.797 0.8462 0.0172 0.0694 0.0241 0.0894 -08442 

0.1164 0.1624 -0.8257 0.1109 0.0980 0.0861 0.1609 -0.8314 0.1033 -0.0917 

0.5264 -0.0848 -0.3200 -0.2919 -0.2332 0.4931 -0.0839 -0.3401 -0.3138 0.2490 

0.0578 -0.8830 0.0702 0.0906 0.0039 0.0760 -0.8816 0.0715 0.0893 -0.0145 

0.0065 0.2129 0.6257 0.3312 0.2045 0.0500 0.2200 0.6217 0.3364 -0.1947 

0.2530 0.4003 0.3438 -0.3570 -0.1294 0.2444 0.4030 0.3329 -0.3649 0.1430 
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Table-17 

Factor Rotation Matrix 

Varimax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor 5 

Factor  1          

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.8278 

0.1520 

0.4414 

-0.2747 

-0.1460 

-0.0107 

0.7843 

-0.2106 

-0.2233 

0.5391 

-0.4527 

-0.4417 

0.3021 

-0.2875 

-0.6527 

-0.2369 

0.0475 

0.7980 

0.3837 

0.3969 

-0.2314 

-0.4055 

0.1807 

-0.8030 

0.3234 

Equamax. 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor 5 

Factor  1          

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.8117 

0.1553 

0.4598 

-0.2891 

-0.1488 

-0.0134 

0.7826 

-0.2087 

-0.2273 

0.5404 

-0.4683 

0.4376 

0.2903 

-0.2824 

-0.6521 

-0.2486 

0.0462 

0.7940 

0.3859 

0.3958 

-0.2448 

-0.4120 

0.1743 

-0.7975 

0.3223 

Quartimax. 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor 5 

Factor  1          

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.8319 

0.1510 

0.4366 

-0.2710 

-0.1451 

-0.0101 

0.7848 

-0.2112 

-0.2223 

0.5386 

-0.4484 

0.4427 

0.3050 

-0.2888 

-0.6531 

-0.2340 

0.0480 

0.7991 

0.3831 

0.3970 

-0.2280 

-0.4038 

0.1823 

-0.8044 

0.3236 

Orthomax 

 Factor  1 Factor 2 Factor  3 Factor 4 factor  5 

Factor  1          

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7935 

0.1437 

0.4856 

-0.3006 

-0.1536 

-0.0059 

0.7823 

-0.2003 

-0.2406 

0.5385 

-0.4823 

0.4310 

0.2816 

-0.2793 

-0.6514 

-0.2669 

0.0408 

0.7875 

0.3820 

0.4013 

0.2579 

0.4243 

-0.1569 

0.7924  

-0.3178 
 

Table-18 

Information Criteria 

Information Criteria Values 

Log Likelihood -268.3175 

Akaike  546.6350 

Schwarz 272.5649 

Hannan Quinne 270.6194 

 

For  n=70, p =10 and k = 2 

Table-19 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax Loadings 

I II I II I II I II 

0.4699 0.1452 0.4705 0.1433 0.4698 0.1456 0.4434 -0.2128 

-0.2739 0.1140 -0.2735 0.1151 -0.2740 0.1138 -0.1235 0.2698 

0.1437 -0.0249 0.1436 -0.0254 0.1437 -0.0248 0.0885 -0.1159 

-0.0327 -0.3481 -0.0341 -0.3480 -0.0324 -0.3482 -0.2606 -0.2332 

-0.4369 0.0296 -0.4368 0.0313 -0.4369 0.0292 -0.3005 0.3186 

-0.1192 0.0560 -0.1189 0.0564 -0.1192 0.0559 -0.0494 0.1220 

-0.0112 0.3385 -0.0098 0.3385 -0.0114 0.3385 0.2218 0.2559 

0.2034 -0.1007 0.2030 -0.1015 0.2035 -0.1005 0.0808 -0.2121 

0.0872 0.3954 0.0888 0.3950 0.0869 0.3955 0.3327 0.2308 

0.2853 -0.1387 0.2847 -0.1399 0.2854 -0.1385 0.1150 -0.2956 
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Table-20 

Factor Rotation Matrix 

Varimax 

 Factor I Factor II 

Factor  I 

Factor  II 

0.9998 

0.0213 

-0.0213 

0.9998 

Equamax 

 Factor I Factor II 

Factor  I 

Factor  II 

0.9997 

0.0253 

-0.0243 

0.997 

Quartimax 

 Factor I Factor II 

Factor  I 

Factor  II 

0.9998 

0.0205 

-0.0205 

0.0277 

Orthomax  

 Factor I Factor II 

Factor  I 

Factor  II 

0.7191  
0.6950 

-0.6950 

0.7191 

 

Table-21 

Information Criteria 

Information Criteria Values 

Log Likelihood -341.9745 

Akaike 687.9690 

Schwarz 343.8196 

Hannan Quinne 343.0386 

 

For  n =70 , p =10, and k =3 

 

Table-22 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax  Loadings 

Factor 

I 

Factor     

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

0.5157 0.0368 -0.0268 0.5142 0.0452 0.0401 0.5145 0.0353 -0.0464 0.4769 0.1988 0.0326 

-0.2715 0.1597 -0.0664 -0.2615 -0.0967 0.1609 -0.2735 0.1596 -0.0579 -0.2436 -0.1108 0.1789 

0.0644 0.0974 0.2220 0.0327 0.2322 0.0890 0.0729 0.0995 0.2184 -0.0390 0.2477 0.0070 

-0.0462 -0.3815 0.0461 -0.0483 0.0249 -0.3832 -0.0451 -0.3809 0.0517 -0.0100 -0.1118 -0.3704 

-0.4095 0.0333 -0.1545 -0.3849 -0.2075 0.0375 -0.4149 0.0327 -0.1395 -0.3194 -0.2850 0.0972 

-0.0771 0.0033 -0.1287 -0.0589 -0.1378 0.0079 -0.0819 0.0021 -0.1258 -0.0215 -0.1390 0.0523 

-0.0272 0.4278 0.0172 -0.0334 0.0295 0.4267 -0.0257 0.4281 0.0138 -0.0874 0.1518 0.3917 

0.1354 -0.0185 0.2108 0.1057 0.2264 -0.0261 0.1432 -0.0167 0.2058 0.0453 0.2268 -0.0981 

0.2221 0.2129 -0.3325 0.2632 -0.2908 0.2267 0.2099 0.2090 -0.3427 0.3027 -0.1177 0.3158 

0.1512 0.0466 0.3894 0.0964 0.4078 0.0320 0.1658 0.0502 0.3830 -0.0173 0.4068 -0.1041 
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Table-23 

Factor Rotation Matrix 

Varimax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.9246 

0.2148 

-0.3145 

0.0005 

0.8250 

0.5651 

0.3809 

-0.5227 

0.7627 

Equamax  

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.8642 

0.2759 

-0.4208 

0.5031 

-0.4568 

0.7336 

-0.0102 

0.8457 

0.5336 

Quartimax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.9382 

0.1968 

-0.2846 

0.0022 

0.8192 

0.5735 

0.3460 

-0.5387 

0.7681 

Orthomax 

 Factor I Factor II Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.6990 

0.2890 

-0.6541 

0.6968 

-0.0695 

0.7139 

-0.1609 

0.9548 

0.2499 
 

Table-24 

Information Criteria 

Information Criteria Values 

Log Likelihood -349.9615 

Akaike  705.9230 

Schwarz 352.7291 

Hannan Quinne 351.5576 
 

For n=70, p =10, and k = 5. 

Table-25 

Rotated Factor Loadings 

Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.8480 0.0434 -0.0763 0.0003 -0.1500 0.8484 0.0419 -0.0701 -0.0113 -0.1507 

-0.2272 0.4101 -0.3887 0.4412 0.0731 -0.2167 0.4135 -0.3921 0.4391 0.0796 

-0.1121 0.1650 0.5811 -0.0283 -0.1516 -0.1171 0.1658 0.5791 -0.0247 -0.1549 

-0.1100 -0.7003 -0.0253 0.0903 -0.0700 -0.1101 -0.6992 -0.0266 0.0975 -0.0707 

-0.5837 0.1119 -0.3468 0.0205 -0.0295 -0.5802 0.1132 -0.3520 0.0266 -0.0261 

-0.0847 -0.0169 -0.0040 -0.0023 0.9488 -0.0834 -0.0189 0.0014 -0.0068 0.9488 

-0.0378 0.7481 0.0867 -0.0516 -0.1004 -0.0378 0.7480 0.0855 -0.0558 -0.0995 

0.4047 0.0472 0.0599 0.7007 0.2211 0.4144 0.0512 0.0619 0.6934 0.2245 

0.2920 0.2426 -0.1367 -0.6976 0.2619 0.2841 0.2359 -0.1300 -0.7056 0.2586 

0.0201 0.0286 0.8060 0.1260 0.0466 0.0153 0.0299 0.8059 0.1284 0.0424 

Quartimax Loadings Orthomax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.8478 0.0438 -0.0779 0.0029 -0.1499 0.8432 0.0365 -0.0615 -0.0628 -0.1710 

-0.2297 0.4093 -0.3878 0.4417 0.0716 -0.1812 0.4237 -0.4035 0.4319 0.0958 

-0.1107 0.1648 0.5815 -0.0292 -0.1507 -0.1283 0.1682 0.5750 -0.0080 -0.1607 

-0.1100 -0.7006 -0.0250 0.0885 -0.0698 -0.1083 -0.6960 -0.0286 0.1215 -0.0664 

-0.5845 0.1116 -0.3455 0.0191 -0.0303 -0.5732 0.1157 -0.3606 0.0517 -0.0060 

-0.0850 -0.0164 -0.0053 -0.0013 0.9487 -0.0609 -0.0190 0.0151 -0.0132 0.9504 

-0.0378 0.7481 0.0870 -0.0505 -0.1007 -0.0413 0.7470 0.0820 -0.0689 -0.1004 

0.4025 0.0462 0.0594 0.7023 0.2203 0.4605 0.0658 0.0569 0.6641 0.2210 

0.2937 0.2442 -0.1384 -0.6957 0.2626 0.2495 0.2164 -0.1093 -0.7327 0.2453 

0.0215 0.0282 0.8060 0.1253 0.0477 0.0146 0.0361 0.8038 0.1424 0.0315 
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Table-26 

Factor Rotation Matrix 

Varimax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7668 

0.2611 

-0.4251 

0.3553 

-0,1917 

-0.1114 

0.8640 

0.4686 

0.1229 

-0.0803 

0.6131 

-0.1397 

0.5607 

-0.3129 

0.4385 

0.0032 

-0.3919 

0.4893 

0.7468 

-0.2220 

-0.1538 

0.1108 

-0.2142 

0.4505 

0.8457 

Equamax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7612 

0.2587 

-0.4222 

0.3693 

-0.1975 

-0.1123 

0.8600 

0.4741 

0.1266 

-0.0833 

0.6185 

-0.1358 

0.5536 

-0.3100 

0.4432 

-0.0033 

-0.4034 

0.4951 

0.7367 

-0.2221 

-0.1591 

0.1109 

-0.2130 

0.4568 

0.8416 

Quartimax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor 5 

Factor  1          

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7683 

0.2616 

-0.4257 

0.3520 

-0.1903 

-0.1113 

0.8649 

0.4672 

0.1221 

-0.0796 

0.6116 

-0.1407 

0.5626 

-0.3136 

0.4374 

0.0046 

-0.3891 

0.4879 

0.7491 

-0.2220 

-0.1526 

0.1108      

-0.2144 

0.4490 

0.8467    

Orthomax 

 Factor  1 Factor 2 Factor  3 Factor 4 Factor  5 

Factor  1          

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.7477 

0.2416 

-0.4009 

0.4285 

-0.1959 

-0.1142 

0.8478 

0.4908 

0.1409 

-0.0861 

0.6260 

-0.1258 

0.5333 

-0.3130 

0.4581 

-0.0316 

-0.4424 

0.5216 

0.6976 

-0.2091 

-0.1873 

0.1019 

-0.2049 

0.4603 

0.8371 
 

Table-27 

Information Criteria 

Information Criteria Values 

Log Likelihood -367.6505 

Akaike  745.3010 

Schwarz 372.2632 

Hannan Quinne 370.3197 
 

Results and Discussion  

When the sample size (n) considered is thirty (30), the values of Akaike’s Information Criterion (AIC)(Akaike;1987), the Schwarz 

Information Criterion (SIC) and the Hannan Quinne Information Criterion (HQIC) for the different number of retained factors are 

as follows; for k = 2, the AIC, SIC, and HQIC values are 246.7630,122.8586 and 122.1820 respectively. When k = 3, AIC is 

246.3310, SIC is 123.3812 and HQIC is 122.1820; and for k = 5, it shows that AIC =263.3050, SIC =130.3453 and HQIC = 

128.3467.  
 

When the sample size is increased to 50, the AIC, SIC, and HQIC are 502.5950,250.9965 and 250.2182; 507.3000,253.1985, and 

252.0311; 546.6350, 272.5649 and 270.6194 for k = 2,3, and 5 respectively. 
 

Finally, at the sample size of 70, the values are AIC = 687.9690, SIC = 343.8196 and HQIC = 343.0386 for k = 2. When k is 3, 

AIC = 705.9230, SIC = 352.7291 and HQIC = 351.5576; and finally for k = 5, the values are 745.3010, 372.2632, and 370.3197 

for AIC, SIC and HQIC respectively. 

 

When the sample sizes are 30, the SIC, and HQIC are smallest for k = 2 follows by k = 3 and highest for k =5 and the AIC value is 

smallest for k=3 follows by k =2, highest for k=5.But for the sample size of 50 and 70, the values are smallest for k =2 follows by 

for k =3 and highest for k =5. 
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Conclusion 

Given the results from this research work (above),  it shows that the optimal number of factors to retain using the method of 

Principal Component Factors method of estimation is two (2) from all the sample sizes and also for all the methods considered 

except for the AIC in which the best is when k=3 follows by k=2 and k=5 respectively of sample thirty (30). This conclusion is 

made based on the fact that in competing sets of models, the model with the smallest value of information criteria is chosen as the 

best model. 

 

Also, from the vales of AIC, SIC, and HQIC obtained above, the Hannan Quinne information criterion performs best for all the 

three criteria considered. This is followed by the SIC and AIC respectively. Finally, observation was made that the higher the 

sample size, the higher the value of the information criteria. 

 

The factor rotation matrix for all the sample sizes and the number of parameters retained as considered is almost the same for all 

the four methods of rotation considered here. 
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