

Research Journal of Mathematical and Statistical Sciences ______ Vol. 1(9), 15-29, October (2013)

Method of Principal Component Factors Estimation of Optimal Number of Factors: An Information Criteria Approach

Nwosu F. Dozie¹, Onyeagu I. Sidney², Osuji A. George² and Ekezie Dan Dan³

¹Department of Mathematics and Statistics Federal Polytechnic Nekede, Owerri Imo State, NIGERIA ²Department of Statistics Nnamdi Azikiwe University Awka, Anambra State NIGERIA ³Department of Statistics, Imo State University, Owerri, PMB 2000, Owerri NIGERIA

Available online at: www.isca.in, www.isca.me

Received 23rd September 2013, revised 5th October 2013, accepted 12th October 2013

Abstract

This paper try to x-ray the number of factors (k) to be retained in a factor analysis for different sample sizes using the method of Principal Component Factor estimation when the number of variables are ten (10). Stimulated data were used for ample sizes of 30,50 and 70 and the Akaike Information Criterion (AIC), the Schwarz Information Criterion (SIC) and the Hannan Quinne Information Criterion (HQIC) values were obtained when the number of factors(k) are two, three, and five (2,3 and 5). It was discovered that the optimal number of factors to retain using the method of Principal Component Factors method of estimation is two (2) from all the sample sizes and also for all the methods considered except for the AIC in which the best is when k=3 follows by k=2 and k=5 respectively of sample thirty (30). Hence, conclusion is drawn that for the three sample sizes considered, the optimal number of factors to retain is 2.

Keywords: Factor Analysis, Factor Rotation, Principal Component Factors Method, Akaike, Schwarz, and Hannan Quinne Information Criteria.

Introduction

Factor analysis is a collection of methods used to examine how underlying constructs influences the responses on a number of measured variables. Factor analysis is based on the common factor model illustrated in figure 1. This model proposes that each observed response (measure 1 through measure 5) is influenced partially by underlying common factors (factor 1 and factor 2) and partially by underlying unique factors (E1 through E5). The strength of the link between each factor and each measure varies, such that a given factor influences some measures more than others¹.

Figure-1 Factor analysis is based on the common factor model

Factor analysis is performed by examining the pattern of correlations (or covariance) between the observed measures. Measures that are highly correlated (either positively or negatively) are likely influenced by the same factors, while those that are not highly correlated are likely influenced by different factors.

In the factor analysis, we represent the variables $y_1, y_2, ..., y_p$ as a linear combination of a few random variables $f_1, f_2, ..., f_m$ (m<p) called factors. The factors are underlying constructs or latent variables that 'generate' the y's. Like the original variables, the factors vary from individual to individual; but unlike the variables, the factors cannot be measured or observed ². The existence of these hypothetical variables is therefore open to question. If the original variables $y_1, y_2, ..., y_p$ are at least moderately correlated, the basic dimensionality of the system is less than *p*. The goal of factor analysis is to reduce the redundancy among

Research Journal of Mathematical and Statistical Sciences _ Vol. **1(9)**, 15-29, October (**2013**)

variables by using a smaller number of factors. Factor analysis can be viewed as an extension of principal components analysis. It related to the principal components analysis in that both seek a simpler structure in a set of variables but they differ in many respects. Both of them have the goal of reducing dimensionality. Because the objectives are similar, many authors discuss principal components analysis as another type of factor analysis.

The Mathematical Model for factor structure: Suppose that the multivariate system consist of a random sample $y_1, y_2, ..., y_n$ from a homogeneous population with mean μ and covariance matrix Σ . The factor analysis model expresses each variable as a linear combination of underlying common factors $f_1, f_2, ..., f_m$, with an accompanying error term to account for that part of the variable that is unique (not in common with the other variables).

For y_1, y_2, \ldots, y_p in any observation vector y, the model is as follows

$$\begin{aligned} -\mu_1 &= \lambda_{11}f_1 + \dots + \lambda_{1m}f_m + \varepsilon_1 \\ Y_2 - \mu_2 &= \lambda_{21}f_1 + \dots + \lambda_{2m}f_m + \varepsilon_2 \\ &\vdots \\ Y_p - \mu_n &= \lambda_{p1}f_1 + \dots + \lambda_{pm}f_m + \varepsilon_p \end{aligned}$$
(1.1.1)

ideally, *m* should be substantially smaller than *p*.

 $f_i = j$ -th common-factor variates. $\varepsilon_i = i$ -th specific factor variates.

The coefficients λ_{ii} are called loadings and serve as weights showing how each y_i individually depends on the *f*'s. λ_{ij} indicates the important of j-th factor f_i to the i-th variable y_i and can be used in interpretation of f_i .

It is assumed that for j = 1, 2, ..., m

 $E(f_i) = 0$, $Var(f_i) = 1$ and $Cov(f_i, f_k) = 0, j \neq k$.

The assumptions for ε_i , i = 1, 2, ..., p, are the same, except that we must allow each ε_i to have a different variance, since it shows the residual part of y_i that is not in common with the other variables. Hence, we assume that $E(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \psi_i$, and $Cov(\varepsilon_i, \varepsilon_k) = 0$, $i \neq k$.

Also,

 Y_1

 $Cov(\varepsilon_i, f_i) = 0$ for all i and j

We refer to ψ_i as the specific variance. Since $E(y_i - \mu_i) = 0$, we need $E(f_j) = 0$, j = 1, 2, ..., m.

The assumption $Cov(f_j, f_k) = 0$ is made for parsimony in expressing the y's as functions of few factors as possible. The assumptions $Var(f_j) = 1$, $Var(\varepsilon_i) = \psi_i$, $Cov(f_j, f_k) = 0$, and $Cov(\varepsilon_i, f_j) = 0$ yield a simple expression for variance of y_i . $Var(y_i) = \lambda_{i1}^2 + \lambda_{i2}^2 + \dots + \lambda_{im}^2 + \psi_i$ (1.1.2)

Note that the assumption $Cov(\varepsilon_i, \varepsilon_k) = 0$ implies that the factors account for all the correlations among the y's, that is, all that the y's have in common. Thus the emphasis in factor analysis is on modelling the covariance or correlation among the y's³. For matrix version of the model in equation (1.1.1) above;

Let, $\begin{aligned} f^{I} &= (f_{1}, f_{2}, \dots, f_{m}), \quad y^{I} &= (y_{1}, y_{2}, \dots, y_{p}) \\ \varepsilon^{I} &= (\varepsilon_{1}, \varepsilon_{2}, \dots, \varepsilon_{p}), \quad \mu^{I} &= (\mu_{1}, \mu_{2}, \dots, \mu_{p}), \\ and \qquad \Lambda &= \begin{bmatrix} \lambda_{11} & \dots & \lambda_{1m} \\ \vdots & \vdots & \vdots \\ \lambda_{p1} & \dots & \lambda_{pm} \end{bmatrix}. \end{aligned}$

Then, the factor model can be written as $(y - \mu) = \Lambda f + \varepsilon$.

Hence, $E(f_j) = 0$, $Var(f_j) = 1$, i = 1, 2, ..., m and $Cov(f_j, f_k) = 0$, $j \neq k$

become Var(F) = I. $E(\varepsilon_i) = 0, i = 1, 2, ..., p$ becomes $E(\varepsilon) = 0$; $Var(\varepsilon_i) = \psi_i, i = 1, 2, ..., p$, and $Cov(\varepsilon_i, \varepsilon_k) = 0, i \neq k$ become (1.1.3)

$$Cov(\varepsilon) = \psi = \begin{bmatrix} \psi_1 & 0 & \dots & 0 \\ 0 & \psi_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \psi_p \end{bmatrix}$$

and

 $Cov(\varepsilon_i, f_j) = 0$, for i and j becomes $Cov(\varepsilon, f) = 0$.

The notation $Cov(\varepsilon, f)$ indicates a rectangular matrix containing the covariance of the f's with the ε 's. $Cov(\varepsilon, f) = Cov(\varepsilon, f)$

 $\begin{bmatrix} \sigma f_1 \epsilon_1 & \sigma f_1 \epsilon_2 & \dots & \sigma f_1 \epsilon_p \\ \sigma f_2 \epsilon_1 & \sigma f_2 \epsilon_2 & \dots & \sigma f_2 \epsilon_p \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \sigma f_m \epsilon_1 & \sigma f_m \epsilon_2 & \dots & \sigma f_m \epsilon_p \end{bmatrix}$

Since the emphasis in factor analysis is on modelling the covariance among the y's, we wish to express the $\frac{1}{2}p(p-1)$ covariance (and the p variances) of the variances $y_1, y_2, ..., y_p$ in term of a simplified structure involving the *pm* loadings λ_{ij} and the p-specific variances ψ_i ; that is, we wish to express Σ in terms of Λ and ψ . Since μ does not affect variances and covariances of y, we have

$$\Sigma = Cov(y) = Cov(\Lambda f + \varepsilon)$$

From $Cov(\epsilon, f) = 0$; Af and ϵ are uncorrelated; therefore, the covariance matrix of their sum is the sum of their covariance matrices:

$$\Sigma = \text{Cov}(y) = \text{Cov}(\Lambda f + \varepsilon) = \text{Cov}(\Lambda f) + \text{Cov}(\varepsilon)$$

= $\Lambda \text{Cov}(f)\Lambda^{1} + \psi$
= $\Lambda I\Lambda^{1} + \psi$
= $\Lambda\Lambda^{1} + \psi$ (1.1.4)

If Λ has only a few columns, say two or three, then $\Sigma = \Lambda \Lambda^{I} + \psi$ represents a simplified structure for Σ , in which the covariances are modelled by λ_{ij} 's alone since ψ is diagonal.

Also we can find the covariances of y's with the *f*'s in terms of the λ 's. the loading themselves represent covariances of the variables with the factors, it then implies that $Cov(y_i, f_j) = \lambda_{ij}$; i = 1, 2, ..., p and j = 1, 2, ..., m. Since λ_{ij} is the (ij)th elements of Λ , we then have that $Cov(y, f) = \Lambda$ (1.1.5)

If standardized variables are used, equation (1.2.5) is replaced by $p_p = \Lambda \Lambda^I + \psi$, and the loadings become correlations: $Cov(y_i, f_j) = \lambda_{ij}$ (1.1.6)

Partitioning the variance of y_i into a component due to the common factors called the communality, and a component unique to y_i , called the specific variance⁴.

Introducing communality, $Cov(Y_i) = \Lambda \Lambda^1 + \Psi$ can be written as $Var(Y_{ij}) = \Lambda_{i1}^2 + ... + \Lambda_{im}^2 + \Psi_i^2$; $Cov(Y_{ij}, Y_{ik}) = \Lambda_{i1}\Lambda_{k1} + ... + \Lambda_{jm}\Lambda_{km}$

and $Cov(Y_i, F_i) = \Lambda$ can be written as $Cov(Y_{ik}, X_{ik}) = \Lambda_{ik}$.

Communality is the portion of the variance of the variable contributed by the m common factors.

Suppose the ith communality is h_i^2 , then $\sigma_{ii} = Var(y_i) = (\lambda_{i1}^2 + \lambda_{i2}^2 + \dots + \lambda_{im}^2) + \psi_i$ $= h_i^2 + \psi_i$ = communality + specific variancewhere, communality $= h_i^2 = (\lambda_{i1}^2 + \lambda_{i2}^2 + \dots + \lambda_{im}^2)$, and specific variance $= \psi_i$. The i-th communality is the sum of square of the loading of the ith variable on the m common factor. When the number of factors m > 1, there are multiple factor loadings that generate the same covariance matrix.

The loading in the model (1.1.3) can be multiply by an orthogonal matrix without impairing their ability to reproduce the covariance matrix in $\Sigma = \Lambda \Lambda^{I} + \psi$.

Let β be any mxm orthogonal matrix. If we let $\Lambda^* = \Lambda \beta$ and $f^* = \beta^1 f$, then f^* has the same statistical properties as f since $E(f^*) = E(\beta^{I}f) = \beta^{I}E(f) = 0.$

 $Cov(f^*) = Cov(\beta^1 f) = \beta^1 Cov(f)\beta = \beta^1 \beta = I_{mxm}$ Λ and Λ^1 yield the same covariance because $\Lambda \Lambda^1 = \Lambda^* \Lambda^{*1}$. The factor model $(y - \mu) = \Lambda f + \varepsilon = \Lambda \beta \beta^1 f + \varepsilon$ = $\Lambda^* f^* + \varepsilon$, produces the same covariance matrix Σ ,

since $\Sigma = \Lambda \Lambda^{I} + \psi = \Lambda \beta \beta^{I} \Lambda + \psi = \Lambda^{*} \Lambda^{*I} + \psi$.

The Principal Components Method

The first technique we consider is commonly called the principal component method. The covariance matrix Σ is represented by the spectral decomposition⁵. If Σ has eigenvalues λ_i with $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$ and corresponding eigenvector e_i , then, $\Sigma = \lambda_1 e_1 e_1^I + \lambda_2 e_2 e_2^I + \dots + \lambda_p e_p e_p^I = \Lambda_{(\text{pxp})} \Lambda_{(\text{pxp})}^I;$

where $\Lambda_{(pxp)} = (\sqrt{\lambda_1}e_1, \sqrt{\lambda_2}e_2, \dots, \sqrt{\lambda_p}e_p)$. Because this matrix product form represents the covariance matrix perfectly, there is no uniqueness. However, this for is not useful for factor analysis because the number of factors should be less than the number of variables. It is desirable to have a model that explain the covariance with small number of common factors and leave the differences between two as uniqueness. Suppose the number of variables is p and the number of factors is m, then we find m such that the last p-m eigenvalues are so small that we can ignore the contribution of $\Sigma = \lambda_{m+1}e_{m+1}e_{m+1}^{l} + \lambda_{m+2}e_{m+2}e_{m+2}^{l} + \cdots + \lambda_{m+2}e$ $\lambda_{\rm p} e_{\rm p} e_p^I$ to Σ . We then have,

$$\Sigma = \lambda_1 e_1 e_1^l + \lambda_2 e_2 e_2^l + \dots + \lambda_m e_m e_m^l + diag(\Psi_1, \Psi_2, \dots, \Psi_p)$$

= $\Lambda_{(\text{pxm})} \Lambda_{(\text{pxm})}^l + \Psi$;
where $\Lambda_{(\text{pxp})} = (\sqrt{\lambda_1} e_1, \sqrt{\lambda_2} e_2, \dots, \sqrt{\lambda_m} e_m)$ and $\Psi_1, \Psi_2, \dots, \Psi_p$ are very small. This representation is principal components solution.

Because the units of the variables of the original data may be different, standardization is required for a factor model. That is, $Z_{ij} = \frac{(y_{ij} - \bar{y}_j)}{\sqrt{s_{ij}}};$ i = 1,..., m and j = 1, ..., p, is required because some variables with large variances influences the determination of factor loading too much. In this case, the sample covariance matrix, S, becomes the sample correlation matrix, R. For the principal components method, the estimate of each factor loading is fixed independent of the number of factors.

If
$$\tilde{\Lambda} = \sqrt{\hat{\lambda}_1} \hat{e}_1, \sqrt{\hat{\lambda}_2} \hat{e}_2, \dots, \sqrt{\hat{\lambda}_q} \hat{e}_q)$$
 for $m = q$, and
 $\tilde{\Lambda} = \sqrt{\hat{\lambda}_1} \hat{e}_1, \sqrt{\hat{\lambda}_2} \hat{e}_2, \dots, \sqrt{\hat{\lambda}_q} \hat{e}_q)$ for $m = n, q < n$,

then $\sqrt{\hat{\lambda}_1}\hat{e}_1, \sqrt{\hat{\lambda}_2}\hat{e}_2, \dots, \sqrt{\hat{\lambda}_m}\hat{e}_m$) are the same for both cases.

One way of determining the number of factors m is to consider the residual matrix $S - (\tilde{\Lambda}\tilde{\Lambda}^{1} + \Psi)$. If m's are chosen to ensure that the residual matrices are small enough, the least number of m among all m's that satisfy the small residual matrix condition is appropriate. The sum of squared entries of

$$S - \left(\widetilde{\Lambda}\widetilde{\Lambda}^{I} + \Psi\right) \leq \hat{\lambda}_{m+1}^{2} + \hat{\lambda}_{m+2}^{2} + \dots + \hat{\lambda}_{p}^{2}$$

This means that if the right hand side of the inequality is small, then the left side should also be small.

The contribution to the total sample variance from the k-th common factor is $\tilde{\Lambda}_{1k}^2 + \tilde{\Lambda}_{2k}^2 + \dots + \tilde{\Lambda}_{pk}^2 = \left(\sqrt{\hat{\lambda}_k} e_k\right)^1 \left(\sqrt{\hat{\lambda}_k} e_k\right) = \hat{\lambda}_k.$

 $\frac{\hat{\lambda}_k}{S_{11}+S_{22}+\cdots+S_{m}}$, for a sample covariance Therefore, the proportion of the total sample variance due to the k-th factors equal

matrix, S, and $\frac{\hat{\lambda}_k}{p}$ for a sample correlation matrix R. From this proportion, m is chosen to obtain the appropriate high proportion.

Information Criteria: The necessity of introducing the concept of model evaluation has been recognized as one of the important technical areas and the problem is posed on the choice of the best approximating model among a class of competing models by a suitable model evaluation criterion given a data set. Model evaluation criteria are figures of merit, or performance measures for competing models. Factor analysis can be characterized as multivariate technique for analyzing the internal relationship among a set of variables. Based on the usual factor analysis model, choosing a model with too few parameters can involve making unrealistically simple assumptions and lead to high bias, poor prediction, and missed opportunities for insight. Such models are not flexible enough to describe the sample or the population well. A model with too many parameters can fit the observed data very well, but be too closely tailored to it; such models may generalize poorly. Penalized-likelihood information criteria, such as Akaike's information criterion (AIC), the Schwarz's information criterion (SIC), the Hannan-Quinn information criterion (HQIC) and so on are widely used for model selection⁶. The comparison of the models using information criterion can be viewed as equivalent to a likelihood ratio test and understanding the differences among the criteria may make it easier to compare the results and to use them to make informed decisions.

AKAIKE'S information criterion is probably the most relevant and famous as for the comparison and selection between different models and is constructed on log likelihood AIC = -2logmax L + 2k

where L denotes the likelihood function of the factor model and k is the number of the model's parameter/factors. logmax L(k) = $-\frac{1}{2}N|\log|\Sigma_k| + tr\Sigma_k^{-1}S|$, where S denotes the sample covariance matrix of Y and $\Sigma_k = \Lambda_k \Lambda_k^{-1} + \psi^2$; Λ_k is the matrix factor of factor loading. The first term can be interpreted as a goodness-of-fit measurement, while the second gives a growing penalty to increasing numbers of parameters according to the parsimony principle. In the choice of model, a minimization rule is used to select the model with the minimum Akaike information criterion value.

Still in the likelihood based procedures, proposed the alternative information criterion given by

 $SIC = -logmax L + \frac{1}{2}k \log N.$

Unlike the AIC. SIC considers the number of N of observations and is therefore less favourable to factors inclusion⁷.

Finally, the third criterion is the Hannan-Quinn information criterion (HQC); it is a criterion for model selection. It is an alternative to Akaike information criterion (AIC) and Bayesian information criterion (BIC). It is given as HQIC = -logmax L + logmax L + logm $2k \log \log N$

where k is the number of parameters, N is the number of observations.

Comparison of AIC and SIC after Rotation at different sample sizes and different retained number of factors (k)

For n=30, p =10 and k = 2

Rotated Factor Loadings								
Varimax	Loadings	Equama	x Loadings	Quartima	x Loadings	x Loadings		
Ι	II	Ι	II	Ι	II	Ι	Π	
-0.1071	-0.1134	-0.1069	-0.1136	-0.1071	-0.1134	-0.1077	-0.1128	
-0.0623	0.6989	-0.0632	0.6988	-0.0621	0.6989	-0.0585	0.6992	
-0.4361	0.2037	-0.4364	0.2031	-0.4360	0.2038	-0.4350	0.2061	
0.5881	0.1466	0.5879	0.1474	0.5882	0.1464	0.5889	0.1434	
0.5502	-0.3825	0.5508	-0.3818	0.5501	-0.3827	0.5482	-0.3855	
-0.7496	-0.2086	-0.7493	-0.2096	-0.7497	-0.2084	-0.7508	-0.2045	
0.2759	0.6490	0.2750	0.6494	0.2761	0.6489	0.2794	0.6475	
0.0533	-0.5654	0.0541	-0.5653	0.0531	-0.5654	0.0502	-0.5657	
0.0847	0.3039	0.0842	0.3040	0.0848	0.3039	0.0863	0.3035	
0.6170	-0.1309	0.6172	-0.1301	0.6170	-0.1311	0.6163	-0.1343	

Table-1

Table-2Factor Rotation Matrix

Varimax	-	
	Factor I	Factor II
Factor I	0.9998	0.0207
Factor II	-0.0207	0.9998

Equamax

1		
	Factor I	Factor II
Factor I	0.9998	0.0220
Factor II	-0.0220	0.9998

Quartimax

	Factor I	Factor II
Factor I	0.9998	0.0204
Factor II	-0.0204	0.9998

Orthomax

	Factor I	Factor II
Factor I	0.9999	0.0152
Factor II	-0.0152	0.9999

Table-3	
Information Criteria	
Information Criteria	Values
Log Likelihood	-121.3815
Akaike	246.7630
Schwarz	122.8586
Hannan Quinne	122.1820

For n = 30, p = 10 and k = 3

Va	Varimax Loadings			Equamax Loadings			Quartimax Loadings Orthomax Load			lings	
Factor I	Factor II	Factor III	Factor I	Factor II	Factor III	Factor I	Factor II	Factor III	Factor I	Factor II	Factor III
0.1884	-0.1966	0.6330	0.2074	-0.1990	0.6262	0.1833	-0.1959	0.6347	0.2250	-0.2095	0.6167
-0.1712	0.7448	-0.2466	-0.1780	0.7458	-0.2385	-0.1695	0.7445	-0.2487	-0.1800	0.7504	-0.2223
-0.1441	0.1444	0.6843	-0.1231	0.1420	0.6889	-0.1496	0.1451	0.6830	-0.1010	0.1327	0.6943
0.3710	0.1806	-0.5867	0.3531	0.1824	-0.5970	0.3756	0.1800	-0.5839	0.3360	0.1888	-0.6049
0.4865	-0.3997	-0.2358	0.4788	-0.3991	-0.2520	0.4885	-0.3998	-0.2315	0.4681	-0.3985	-0.2722
-0.7914	-0.1579	0.1001	-0.7881	-0.1577	0.1236	-0.7922	-0.1581	0.0939	-0.7851	-0.1544	0.1453
0.3644	0.6172	0.0802	0.3672	0.6166	0.0713	0.3636	0.6173	0.0824	0.3735	0.6131	0.0689
-0.0903	-0.5341	-0.2733	-0.0990	-0.5331	-0.2724	-0.0880	-0.5344	-0.2735	-0.1110	-0.5284	-0.2769
0.2452	0.2562	0.2904	0.2541	0.2550	0.2838	0.2428	0.2566	0.2921	0.2644	0.2492	0.2795
0.7108	-0.1947	0.0555	0.7120	-0.1954	0.0331	0.7104	-0.1944	0.0614	0.7113	-0.2005	0.0085

Table-4 Rotated Factor Loadings

	Factor Rolation Matrix	
Varimax		
	Factor I Factor II Factor III	
Factor I	0.8974 -0.0039 -0.4411	
Factor II	0.0605 0.9916 0.1143	
Factor III	0.4370 -0.1293 0.8901	
Equamax		
	Factor I Factor II Factor III	
Factor I	0.8836 -0.0029 -0.4683	
Factor II	0.0648 0.9911 0.1160	
Factor III	0.4638 -0.1329 0.8759	
Quartimax		
	Factor I Factor II Factor III	
Factor I	0.9009 -0.0041 -0.4340	
Factor II	0.0593 0.9917 0.1137	
Factor III	0.4299 -0.1282 0.8937	
Orthomax		
	Factor I Factor II Factor III	
Factor I	0.8688 -0.0019 -0.4951	
Factor II	0.0752 0.9889 0.1282	
Factor III	0.4893 -0.1486 0.8593	
	Table-6	
	Information Criteria	

Table-5 Factor Rotation Matrix

Information Criteria					
Information Criteria	Values				
Log Likelihood	-121.1655				
Akaike	246.3310				
Schwarz	123.3812				
Hannan Quinne	122.1820				

For n=30, p=10, and k=5.

Rotated Factor Loadings									
	7	Varimax Load	ings		Equamax Loadings				
1	2	3	4	5	1	2	3	4	5
0.0130	-0.1314	0.0082	0.0204	0.8806	0.0033	-0.1506	0.1926	0.0135	0.8564
0.0217	-0.0207	0.6813	0.1222	-0.5070	-0.200	-0.1429	0.5348	0.0446	-0.6544
0.0996	-0.8240	0.1610	0.1049	0.0759	0.1045	-0.8403	0.0295	0.1033	0.0537
0.2359	0.6938	0.1385	0.0143	-0.1348	0.2117	0.6576	0.2530	-0.0177	-0.1817
0.2348	0.3869	-0.6962	0.2811	-0.0546	0.2726	0.5192	-0.5415	0.3544	0.0944
-0.8738	-0.1520	-0.1496	-0.0278	-0.0121	-0.8570	-0.1260	-0.2421	-0.0054	0.0312
0.2094	0.3071	0.6165	0.3372	0.3265	0.1514	0.1733	0.7736	0.2496	0.1578
0.0563	0.1216	-0.1389	-0.7811	0.1033	0.0686	0.1454	-0.1736	-0.7623	0.1448
-0.0232	0.0211	-0.1228	0.7523	0.1179	-0.0232	0.0412	0.0059	0.7597	0.1284
0.8521	-0.1092	-0.2026	-0.0773	0.0108	0.8669	-0.0607	-0.1551	-0.0502	0.0587
	Ç	Quartimax Load	lings		Orthomax Loadings				
1	2	3	4	5	1	2	3	4	5
0.0134	-0.0059	-0.1360	0.0200	0.8799	0.0061	-0.1228	0.1794	0.0228	0.8634
0.0222	0.6896	-0.0153	0.1229	-0.4956	0.0043	-0.1060	0.5575	0.0920	-0.6376
0.0970	0.1631	-0.8240	0.1049	0.0744	0.1079	-0.8343	0.0859	0.1085	0.0683
0.2385	0.1374	0.6942	0.0142	-0.1292	0.2195	0.6744	0.1942	0.0024	-0.1840
0.2354	-0.6974	0.3834	0.2805	-0.0644	0.2463	0.4723	-0.6217	0.3093	0.0754
-0.8746	-0.1475	-0.1494	-0.0271	-0.0145	-0.8651	-0.1464	-0.1970	-0.0287	0.0225
0.2120	0.6091	0.3072	0.3373	0.3383	0.1767	0.2392	0.7233	0.3088	0.1776
0.0559	-0.1407	0.1203	-0.7813	0.1011	0.0668	0.1344	-0.1309	-0.7748	0.1341
-0.0225	-0.1253	0.0200	0.7522	0.1163	-0.0301	0.0410	-0.0600	0.7565	0.1318
0.8514	-0.2034	-0.1133	-0.0783	0.0060	0.8607	-0.0717	-0.1799	-0.0580	0.0594

Table-7 Rotated Factor Loadings

Varimax					
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Factor 1	0.7775	0.6024	-0.1322	0.1139	-0.0473
Factor 2	0.0724	-0.0338	0.8097	0.5609	-0.1529
Factor 3	0.3688	-0.5222	-0.1608	0.3364	0.6725
Factor 4	-0.4536	0.3725	-0.4067	0.6938	0.0937
Factor 5	-0.2201	0.4739	0.3682	-0.2793	0.7165
Equamax					
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Factor 1	0.7708	0.6234	0.0535	0.1149	-0.0350
Factor 2	0.0133	-0.1891	0.7936	0.4611	-0.3488
Factor 3	0.3787	-0.4930	-0.0264	0.3586	0.6958
Factor 4	-0.4394	0.4389	-0.2382	0.7281	0.1658
Factor 5	-0.2631	0.3741	0.5567	-0.3398	0.6045
Quartimax					
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Factor 1	0.7796	-0.1351	0.5992	0.1131	-0.0471
Factor 2	0.0738	0.8118	-0.0298	0.5614	-0.1394
Factor 3	0.3676	-0.1704	-0.5277	0.3356	0.6669
Factor 4	-0.4521	-0.4097	0.3719	0.6939	0.0895
Factor 5	-0.2175	0.3547	0.4726	-0.2792	0.7250
Orthomax.					
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5
Factor 1	0.7688	0.6257	-0.0369	0.1207	-0.0387
Factor 2	0.0423	-0.1276	0.7758	0.5257	-0.3222
Factor 3	0.3725	-0.4850	-0.0466	0.3539	0.7061
Factor 4	-0.4569	0.4168	-0.3179	0.7018	0.1545
Factor 5	-0.2443	0.4281	0.5418	-0.3021	0.6101

Table-8Factor Rotation Matrix

Table-9 Information Criteria

Information Criteria Values						
Log Likelihood	-126.6525					
Akaike	263.3050					
Schwarz	130.3453					
Hannan Quinne	128.3467					

For n = 50, p = 10, and k = 2.

Rotated Factor Loadings							
Varimax I	Varimax Loadings Equamax Loadings		Quartima	ax Loadings	Orthomax Loadings		
Ι	II	Ι	II	Ι	II	Ι	II
0.5129	0.5339	0.5036	0.5427	0.5150	0.5318	0.4984	0.5474
-0.7218	0.0492	-0.7226	0.0367	-0.7216	0.0520	-0.7229	0.0298
-0.0903	0.5106	-0.0991	0.5090	-0.0882	0.5110	-0.1039	0.5080
-0.1462	-0.0546	-0.1452	-0.071	-0.1464	-0.0540	-0.1447	-0.0585
-0.1807	-0.3279	-0.1750	-0.3310	-0.1820	-0.3272	-0.1718	-0.3326
0.4581	-0.1704	0.4610	-0.1625	0.4574	-0.1723	0.4625	-0.1581
0.7001	0.0867	0.6985	0.0988	0.7004	0.0839	0.6975	0.1054
0.1276	-0.6377	0.1386	-0.6354	0.1251	-0.6382	0.1446	-0.6341
-0.4663	0.2947	-0.4713	0.2866	-0.4651	0.2966	-0.4740	0.2822
0.0592	0.5613	0.0495	0.5622	0.0615	0.5610	0.0442	0.5627

Table-10 Rotated Factor Loading

Table 11Factor Rotation Matrix

Varimax		
	Factor I	Factor II
Factor I	0.9816	0.1909
Factor II	-0.1909	0.9816
Equamax	·	
	Factor I	Factor II
Factor I	0.9782	0.2079
Factor II	-0.2079	0.9782
Quartimax	·	
	Factor I	Factor II
Factor I	0.9824	0.1870
Factor II	-0.1870	0.9824
Orthomax	·	
	Factor I	Factor II
Factor I	0.9761	0.2171
Factor II	-0.2171	0.9761

Table-12 Information Criteria					
Information Criteria	Values				
Log Likelihood	-249.2975				
Akaike	502.5950				
Schwarz	250.9965				
Hannan Quinne	250.2182				

For n =50 , p =10, and k =3.

Table-13 Rotated Factor Loadings											
Var	imax Load	ings	Equ	amax Load	lings	Quar	rtimax Loa	dings	Orthomax Loadings		
Factor I	Factor II	Factor III	Factor I	Factor II	Factor III	Factor I	Factor II	Factor III	Factor I	Factor II	Factor III
0.7793	0.2831	0.1743	0.7862	0.2798	0.1465	0.7770	0.2844	0.1821	0.7888	0.2826	0.1252
-0.7613	0.2713	0.1037	-0.7560	0.2719	0.1359	-0.7627	0.2708	0.0944	-0.7529	0.2653	0.1635
0.1297	0.4460	0.2557	0.1406	0.4432	0.2547	0.1264	0.4469	0.2558	0.1461	0.4406	0.2561
0.2092	-0.2878	0.6528	0.2337	-0.2945	0.6414	0.2021	-0.2856	0.6560	0.2557	-0.3016	0.6296
-0.1496	-0.3524	0.1878	-0.1431	0.3539	0.1901	-0.1514	-0.3520	0.1872	-0.1349	-0.3573	0.1897
0.2671	-0.1720	-0.3931	0.2511	-0.1688	-0.4049	0.2716	-0.1729	-0.3896	0.2391	-0.1618	-0.4149
0.5452	0.0338	-0.4638	0.5268	0.0372	-0.4843	0.5503	0.0330	-0.4577	0.5109	0.0469	-0.5002
0.0621	-0.7155	0.0304	0.0615	-0.7159	0.0211	0.0625	-0.7154	0.0333	0.0662	-0.7157	0.0094
-0.0835	0.1749	0.06855	-0.0564	0.1684	0.6899	-0.0914	0.1768	0.6840	-0.0353	0.1588	0.6936
0.1308	0.5753	-0.0469	0.1303	0.5754	-0.0464	0.1308	0.5753	-0.0472	0.1255	0.5768	-0.0427

Varimax			
	Factor I	Factor II	Factor III
Factor I	0.8690	0.0496	-0.4924
Factor II	0.1335	0.9346	0.3298
Factor III	0.4765	-0.3524	0.8055
Equamax			
	Factor I	Factor II	Factor III
Factor I	0.8493	0.0526	-0.5253
Factor II	0.1486	0.9310	0.3333
Factor III	0.5066	-0.3612	0.7829
Quartimax			
	Factor I	Factor II	Factor III
Factor I	0.8744	0.0490	-0.4828
Factor II	0.1289	0.9357	0.3285
Factor III	0.4678	-0.3494	0.8118
Orthomax			
	Factor I	Factor II	Factor III
Factor I	0.8318	0.0648	-0.5513
Factor II	0.1537	0.9274	0.3411
Factor III	0.5334	-0.3684	0.7614

Table-14Factor Rotation Matrix

Table-15

Information Criteria

Information Criteria	Values					
Log Likelihood	-250.6500					
Akaike	507.3000					
Schwarz	253.1985					
Hannan Quinne	252.0311					

For n=50, p=10, and k=5.

Rotated Factor Loadings									
Varimax Loadings					Equamax Loadings				
1	2	3	4	5	1	2	3	4	5
0.7725	0.3589	-0.0099	0.1997	-0.0544	0.7737	0.3583	-0.0267	0.1899	-0.0690
-0.8141	0.3238	0.0526	0.0628	-0.0731	-0.8130	0.3242	0.0684	0.0725	-0.0616
-0.0067	0.2653	0.1122	0.3080	-0.6098	-0.0105	0.2625	0.1112	0.3079	-0.6111
0.0500	-0.1042	-0.0054	0.8633	-0.0243	0.0598	-0.1035	-0.0095	0.8627	-0.0251
-0.0171	0.0566	0.0231	0.0798	0.8462	-0.0019	0.0612	0.0224	0.0804	0.8460
0.1127	0.1624	-0.8264	0.1100	0.0973	0.0989	0.1618	-0.8292	0.1055	0.0942
0.5227	-0.0854	-0.3227	-0.2938	-0.2353	0.5086	-0.0878	-0.3317	-0.3012	-0.2433
0.0584	-0.8830	0.0700	0.0908	0.0049	0.0604	-0.8828	0.0696	0.0913	0.0086
0.0119	0.2134	0.6254	0.3316	0.2042	0.0319	0.2157	0.6233	0.3335	0.2029
0.2532	0.4000	0.3425	-0.3577	-0.1310	0.2539	0.3932	0.3383	-0.3601	-0.1368
	Qu	artimax Loadings	5		Orthomax Loadings				
1	2	3	4	5	1	2	3	4	5
0.7721	0.3590	-0.0055	0.2022	-0.0507	0.7696	0.3681	-0.0420	0.1753	0.0909
-0.8143	0.3238	0.0482	0.0604	-0.0760	-0.8159	0.3123	0.0811	0.0873	0.0483
-0.0058	0.2660	0.1124	0.3080	-0.694	-0.0198	0.2564	0.1083	0.3021	0.6168
0.0475	-0.1045	-0.0046	0.8634	-0.0241	0.0762	-0.1039	-0.0122	0.8610	0.0347
-0.0210	0.0554	0.0231	0.797	0.8462	0.0172	0.0694	0.0241	0.0894	-08442
0.1164	0.1624	-0.8257	0.1109	0.0980	0.0861	0.1609	-0.8314	0.1033	-0.0917
0.5264	-0.0848	-0.3200	-0.2919	-0.2332	0.4931	-0.0839	-0.3401	-0.3138	0.2490
0.0578	-0.8830	0.0702	0.0906	0.0039	0.0760	-0.8816	0.0715	0.0893	-0.0145
0.0065	0.2129	0.6257	0.3312	0.2045	0.0500	0.2200	0.6217	0.3364	-0.1947
0.2530	0.4003	0.3438	-0.3570	-0.1294	0.2444	0.4030	0.3329	-0.3649	0.1430

Table-16

Varimax						
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	
Factor 1	0.8278	-0.0107	-0.4527	-0.2369	-0.2314	
Factor 2	0.1520	0.7843	-0.4417	0.0475	-0.4055	
Factor 3	0.4414	-0.2106	0.3021	0.7980	0.1807	
Factor 4	-0.2747	-0.2233	-0.2875	0.3837	-0.8030	
Factor 5	-0.1460	0.5391	-0.6527	0.3969	0.3234	
Equamax.						
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	
Factor 1	0.8117	-0.0134	-0.4683	-0.2486	-0.2448	
Factor 2	0.1553	0.7826	0.4376	0.0462	-0.4120	
Factor 3	0.4598	-0.2087	0.2903	0.7940	0.1743	
Factor 4	-0.2891	-0.2273	-0.2824	0.3859	-0.7975	
Factor 5	-0.1488	0.5404	-0.6521	0.3958	0.3223	
Quartimax.						
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	
Factor 1	0.8319	-0.0101	-0.4484	-0.2340	-0.2280	
Factor 2	0.1510	0.7848	0.4427	0.0480	-0.4038	
Factor 3	0.4366	-0.2112	0.3050	0.7991	0.1823	
Factor 4	-0.2710	-0.2223	-0.2888	0.3831	-0.8044	
Factor 5	-0.1451	0.5386	-0.6531	0.3970	0.3236	
Orthomax						
	Factor 1	Factor 2	Factor 3	Factor 4	factor 5	
Factor 1	0.7935	-0.0059	-0.4823	-0.2669	0.2579	
Factor 2	0.1437	0.7823	0.4310	0.0408	0.4243	
Factor 3	0.4856	-0.2003	0.2816	0.7875	-0.1569	
Factor 4	-0.3006	-0.2406	-0.2793	0.3820	0.7924	
Factor 5	-0.1536	0.5385	-0.6514	0.4013	-0.3178	

Table-17Factor Rotation Matrix

Table-18 Information Criteria

Information Criteria					
Information Criteria	Values				
Log Likelihood	-268.3175				
Akaike	546.6350				
Schwarz	272.5649				
Hannan Quinne	270.6194				

For n=70, p=10 and k=2

Table-19								
Rotated Factor Loadings								
Varima	x Loadings	Equamaz	x Loadings	Quartin	nax Loadings	Orthomax	Loadings	
Ι	Π	Ι	II	Ι	II	Ι	II	
0.4699	0.1452	0.4705	0.1433	0.4698	0.1456	0.4434	-0.2128	
-0.2739	0.1140	-0.2735	0.1151	-0.2740	0.1138	-0.1235	0.2698	
0.1437	-0.0249	0.1436	-0.0254	0.1437	-0.0248	0.0885	-0.1159	
-0.0327	-0.3481	-0.0341	-0.3480	-0.0324	-0.3482	-0.2606	-0.2332	
-0.4369	0.0296	-0.4368	0.0313	-0.4369	0.0292	-0.3005	0.3186	
-0.1192	0.0560	-0.1189	0.0564	-0.1192	0.0559	-0.0494	0.1220	
-0.0112	0.3385	-0.0098	0.3385	-0.0114	0.3385	0.2218	0.2559	
0.2034	-0.1007	0.2030	-0.1015	0.2035	-0.1005	0.0808	-0.2121	
0.0872	0.3954	0.0888	0.3950	0.0869	0.3955	0.3327	0.2308	
0.2853	-0.1387	0.2847	-0.1399	0.2854	-0.1385	0.1150	-0.2956	

Table-20Factor Rotation Matrix

Varimax		
	Factor I	Factor II
Factor I	0.9998	-0.0213
Factor II	0.0213	0.9998
Equamax		
	Factor I	Factor II
Factor I	0.9997	-0.0243
Factor II	0.0253	0.997
Quartimax		
	Factor I	Factor II
Factor I	0.9998	-0.0205
Factor II	0.0205	0.0277
Orthomax		
	Factor I	Factor II
Factor I	0.7191	-0.6950
Factor II	0.6950	0.7191

Table-21 Information Criteria					
Information Criteria	Values				
Log Likelihood	-341.9745				
Akaike	687.9690				
Schwarz	343.8196				
Hannan Quinne	343.0386				

For n = 70, p = 10, and k = 3

Kotated Factor Loadings											
Varimax Loadings			Equ	amax Loa	dings	Quar	timax Loa	dings	Orthomax Loadings		
Factor I	Factor II	Factor III	Factor I	Factor II	Factor III	Factor I	Factor II	Factor III	Factor I	Factor II	Factor III
0.5157	0.0368	-0.0268	0.5142	0.0452	0.0401	0.5145	0.0353	-0.0464	0.4769	0.1988	0.0326
-0.2715	0.1597	-0.0664	-0.2615	-0.0967	0.1609	-0.2735	0.1596	-0.0579	-0.2436	-0.1108	0.1789
0.0644	0.0974	0.2220	0.0327	0.2322	0.0890	0.0729	0.0995	0.2184	-0.0390	0.2477	0.0070
-0.0462	-0.3815	0.0461	-0.0483	0.0249	-0.3832	-0.0451	-0.3809	0.0517	-0.0100	-0.1118	-0.3704
-0.4095	0.0333	-0.1545	-0.3849	-0.2075	0.0375	-0.4149	0.0327	-0.1395	-0.3194	-0.2850	0.0972
-0.0771	0.0033	-0.1287	-0.0589	-0.1378	0.0079	-0.0819	0.0021	-0.1258	-0.0215	-0.1390	0.0523
-0.0272	0.4278	0.0172	-0.0334	0.0295	0.4267	-0.0257	0.4281	0.0138	-0.0874	0.1518	0.3917
0.1354	-0.0185	0.2108	0.1057	0.2264	-0.0261	0.1432	-0.0167	0.2058	0.0453	0.2268	-0.0981
0.2221	0.2129	-0.3325	0.2632	-0.2908	0.2267	0.2099	0.2090	-0.3427	0.3027	-0.1177	0.3158
0.1512	0.0466	0.3894	0.0964	0.4078	0.0320	0.1658	0.0502	0.3830	-0.0173	0.4068	-0.1041

Table-22 Rotated Factor Loadings

	Table-23	
Factor	Rotation	Matrix

Varimax			
	Factor I	Factor II	Factor III
Factor I	0.9246	0.0005	0.3809
Factor II	0.2148	0.8250	-0.5227
Factor III	-0.3145	0.5651	0.7627
Equamax			
	Factor I	Factor II	Factor III
Factor I	0.8642	0.5031	-0.0102
Factor II	0.2759	-0.4568	0.8457
Factor III	-0.4208	0.7336	0.5336
Quartimax			
	Factor I	Factor II	Factor III
Factor I	0.9382	0.0022	0.3460
Factor II	0.1968	0.8192	-0.5387
Factor III	-0.2846	0.5735	0.7681
Orthomax			
	Factor I	Factor II	Factor III
Factor I	0.6990	0.6968	-0.1609
Factor II	0.2890	-0.0695	0.9548
Factor III	-0.6541	0.7139	0.2499

Table-24 Information Criteria

Information Criteria	Values			
Log Likelihood	-349.9615			
Akaike	705.9230			
Schwarz	352.7291			
Hannan Quinne	351.5576			

For n=70, p=10, and k=5.

Rotated Factor Loadings										
	7	Varimax Loading	S	Equamax Loadings						
1	2	3	4	5	1	2	3	4	5	
0.8480	0.0434	-0.0763	0.0003	-0.1500	0.8484	0.0419	-0.0701	-0.0113	-0.1507	
-0.2272	0.4101	-0.3887	0.4412	0.0731	-0.2167	0.4135	-0.3921	0.4391	0.0796	
-0.1121	0.1650	0.5811	-0.0283	-0.1516	-0.1171	0.1658	0.5791	-0.0247	-0.1549	
-0.1100	-0.7003	-0.0253	0.0903	-0.0700	-0.1101	-0.6992	-0.0266	0.0975	-0.0707	
-0.5837	0.1119	-0.3468	0.0205	-0.0295	-0.5802	0.1132	-0.3520	0.0266	-0.0261	
-0.0847	-0.0169	-0.0040	-0.0023	0.9488	-0.0834	-0.0189	0.0014	-0.0068	0.9488	
-0.0378	0.7481	0.0867	-0.0516	-0.1004	-0.0378	0.7480	0.0855	-0.0558	-0.0995	
0.4047	0.0472	0.0599	0.7007	0.2211	0.4144	0.0512	0.0619	0.6934	0.2245	
0.2920	0.2426	-0.1367	-0.6976	0.2619	0.2841	0.2359	-0.1300	-0.7056	0.2586	
0.0201	0.0286	0.8060	0.1260	0.0466	0.0153	0.0299	0.8059	0.1284	0.0424	
	Ç	Quartimax Loading	(S		Orthomax Loadings					
1	2	3	4	5	1	2	3	4	5	
0.8478	0.0438	-0.0779	0.0029	-0.1499	0.8432	0.0365	-0.0615	-0.0628	-0.1710	
-0.2297	0.4093	-0.3878	0.4417	0.0716	-0.1812	0.4237	-0.4035	0.4319	0.0958	
-0.1107	0.1648	0.5815	-0.0292	-0.1507	-0.1283	0.1682	0.5750	-0.0080	-0.1607	
-0.1100	-0.7006	-0.0250	0.0885	-0.0698	-0.1083	-0.6960	-0.0286	0.1215	-0.0664	
-0.5845	0.1116	-0.3455	0.0191	-0.0303	-0.5732	0.1157	-0.3606	0.0517	-0.0060	
-0.0850	-0.0164	-0.0053	-0.0013	0.9487	-0.0609	-0.0190	0.0151	-0.0132	0.9504	
-0.0378	0.7481	0.0870	-0.0505	-0.1007	-0.0413	0.7470	0.0820	-0.0689	-0.1004	
0.4025	0.0462	0.0594	0.7023	0.2203	0.4605	0.0658	0.0569	0.6641	0.2210	
0.2937	0.2442	-0.1384	-0.6957	0.2626	0.2495	0.2164	-0.1093	-0.7327	0.2453	
0.0215	0.0282	0.8060	0.1253	0.0477	0.0146	0.0361	0.8038	0.1424	0.0315	

Table-25

Varimax									
	Factor 1		Factor 2		Factor 3		Factor 4	Factor 5	
Factor 1	1 0.7668		-0.1114		0.6131		0.0032	-0.1538	
Factor 2	Factor 2 0.2611			0.8640		-0.1397		-0.3919	0.1108
Factor 3	-0.425	51	0.4686			0.5607		0.4893	-0.2142
Factor 4	0.355	3		0.1229		-0.3129		0.7468	0.4505
Factor 5	-0,191	7	-0.0803				0.4385	-0.2220	0.8457
Equamax									
	Factor	1		Factor 2		Factor 3		Factor 4	Factor 5
Factor 1	0.761	2		-0.1123		0.6185		-0.0033	-0.1591
Factor 2	0.258	7	0.8600			-0.1358		-0.4034	0.1109
Factor 3	-0.422	22	0.4741		0.5536		0.4951	-0.2130	
Factor 4	0.3693		0.1266			-0.3100		0.7367	0.4568
Factor 5	-0.1975		-0.0833			0.4432		-0.2221	0.8416
Quartimax	Quartimax								
	Factor 1		Factor 2			Factor 3		Factor 4	Factor 5
Factor 1	0.7683		-0.1113			0.6116		0.0046	-0.1526
Factor 2	0.2616		0.8649		-0.1407		-0.3891	0.1108	
Factor 3	-0.4257		0.4672		0.5626		0.4879	-0.2144	
Factor 4	0.3520		0.1221			-0.3136		0.7491	0.4490
Factor 5	-0.1903		-0.0796			0.4374		-0.2220	0.8467
Orthomax									
Factor		Factor 2		Factor 3	Fa	ctor 4	Factor 5		
Factor 1	0.7477 -0.1142 0.6260		-(-0.0316 -0.1873					
Factor 2	Factor 2 0.2416 0.84		78	-0.1258 -4).4424	0.1019		
Factor 3 -0.4009		0.49	4908 0.5333		0.5216		-0.2049		
Factor 4 0.4285		0.14	09	-0.3130 (0.6976 0.4603			
Factor 5	-0.1959	-0.08	361	0.4581	-(0.2091	0.8371		

Table-26Factor Rotation Matrix

Table-27 Information Criteria

Information Oriforna									
Information Criteria	Values								
Log Likelihood	-367.6505								
Akaike	745.3010								
Schwarz	372.2632								
Hannan Quinne	370.3197								

Results and Discussion

When the sample size (n) considered is thirty (30), the values of Akaike's Information Criterion (AIC)(Akaike;1987), the Schwarz Information Criterion (SIC) and the Hannan Quinne Information Criterion (HQIC) for the different number of retained factors are as follows; for k = 2, the AIC, SIC, and HQIC values are 246.7630,122.8586 and 122.1820 respectively. When k = 3, AIC is 246.3310, SIC is 123.3812 and HQIC is 122.1820; and for k = 5, it shows that AIC =263.3050, SIC =130.3453 and HQIC = 128.3467.

When the sample size is increased to 50, the AIC, SIC, and HQIC are 502.5950,250.9965 and 250.2182; 507.3000,253.1985, and 252.0311; 546.6350, 272.5649 and 270.6194 for k = 2,3, and 5 respectively.

Finally, at the sample size of 70, the values are AIC = 687.9690, SIC = 343.8196 and HQIC = 343.0386 for k = 2. When k is 3, AIC = 705.9230, SIC = 352.7291 and HQIC = 351.5576; and finally for k = 5, the values are 745.3010, 372.2632, and 370.3197 for AIC, SIC and HQIC respectively.

When the sample sizes are 30, the SIC, and HQIC are smallest for k = 2 follows by k = 3 and highest for k = 5 and the AIC value is smallest for k=3 follows by k = 2, highest for k=5.But for the sample size of 50 and 70, the values are smallest for k = 2 follows by for k = 3 and highest for k = 5.

Conclusion

Given the results from this research work (above), it shows that the optimal number of factors to retain using the method of Principal Component Factors method of estimation is two (2) from all the sample sizes and also for all the methods considered except for the AIC in which the best is when k=3 follows by k=2 and k=5 respectively of sample thirty (30). This conclusion is made based on the fact that in competing sets of models, the model with the smallest value of information criteria is chosen as the best model.

Also, from the vales of AIC, SIC, and HQIC obtained above, the Hannan Quinne information criterion performs best for all the three criteria considered. This is followed by the SIC and AIC respectively. Finally, observation was made that the higher the sample size, the higher the value of the information criteria.

The factor rotation matrix for all the sample sizes and the number of parameters retained as considered is almost the same for all the four methods of rotation considered here.

References

- 1. Johnson R.A. and Wichern D.W., Applied Multivariate Statistical Analysis (6th Ed.), Prentics Hall, Englewood Cliffs, New Jersey (2007)
- 2. Onyeagu S.I., A First Course in Multivariate Statistical Analysis (1st Ed.), Mega Concept Publishers (2003)
- 3. Bai J. and Serena N., Determing the Number of Factors in Appoximate Factor Models, *Econometrica*, 70(1), 192-221 (2002)
- 4. Harman H.H., Modern Factor Analysis (3rd Ed.). Chicago: The University of Chicago Press (1976)
- 5. Ogum G.E.O., Introduction to Methods of Multivariate Analysis (1st Ed.). Afri Towers Limited Aba, Nigeria (2002)
- 6. Gayawan E. and Ipinyomi R.A., A comparison of Akaike, Schwarz, and R Square Criteria for Model Selection using some Fertility Models, *Australian Journal of Basic and Applied Sciences*, **3**(4), 3524-3530 (2009)
- 7. Schwarz G., Estimating the Dimension of a Model, Annals of Statistics 6, 461-464 (1978)
- 8. Akaike H., Factor Analysis and Akaike Information (AIC), Psychometrika, 52(3), 317-332 (1987)