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Abstract

In this paper, various imputation methods for missing values in double sampling scheme are suggested. Two different
sampling designs in double sampling scheme are compared under imputed data. For different suggested estimators the bias
and m.s.e up to the first order approximation are derived. Numerical study is performed over two populations using the
expressions of bias and m.s.e and also efficiency compared with Ahmed estimators.

Keywords: Estimation, missing data, bias, mean squared error (m.s.e.), double sampling scheme, srswor, large sample
approximation.

Introduction

Let us consider U = (1,2,3....N) be the finite population of size N and the character under study be denoted by y. Also, x be the
ancillary variable which is highly correlated with study variable. If the population mean X of the auxiliary variable x is unknown,
then in such case the suggested estimator do not play satisfactory role in estimation™ In such case the idea of two-phase sampling
is helpful. A large preliminary simple random sample (without replacement) S° of n’ units is drawn from the population on U and
a secondary sample S of size N (N <n' ) is drawn in either following ways: i. the sample S is as a sub-sample from sample S’

(design 1) as in figure 1, and ii. the sample S is independent to sample S° without replacing S in the population (design 1) as in
figure 2.

Further, the sample S can be divided into two non-overlapping sub groups, i. the set of responding units, by R, and that of non-
responding units by R® and ii. the number of responding units out of sampled n units be denoted by r (r < n).

For every unit i eR Y;is observed, but for the unitsi e R¢, the y; are missing and instead imputed values are derived. The i" value

X; of auxiliary variate is used as a source of imputation for missing data when i e R°. Assume for S, the data x, ={x, :i<S} and
for i’ €S, the data {x :i' S’} are known with mean x=(n)*>x. and x =(n)"Yx respectively’. The symbols that used
i=1 i=1

are: X, Y :the population mean of X and Yy respectively; ;<, y : the sample mean of xand Yy respectively;

§<r, y : the sample mean of Xand Yy respectively; p, : the correlation coefficient between X and Y ;
S, S, : the population mean squares of X and Yy respectively; C, , C, : the coefficient of variation of X and y respectively;
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Sample S is as a sub-sample from sample S’ Sample S is independent to sample S’

without replacing S’ in the population

Large Sample Approximations
Let us consider y, =Y(1+¢,); x: = X(1+e,); x=X(L+e,) and X = X(1+e,) . Now by using the concept of double sampling
scheme and the mechanism of MCAR®, for givenr, nand n' we have:

Designs E(e,) E(e;) Ee?) E(e:) E(e?) E(e?)
I 0 0 5,C? 5,C? 5,C? 5,C?
1 0 0 5,C! 5,C2 5,C} s,C?
Designs E(elez) E(eleg) E(ele;) E(eze3) E(eze's) E(eae's)
I s,pC,C, 5,pC,C, 5,0C, C, 5,C? 5,C? 5,C?
i s,pC,C, o,pC,C, 0 6, C: 0 0

Proposed Strategies
Let y'ji denotes the i observation of the j" imputation strategy and b, b,, byare constants such that the variance of obtained

estimators of Y is minimum. We suggest the following tools of imputation:
Y, if ieR

Yo = )_/,+(1_1f1)[k1(>_<—>_<)+(1—f1)k2<xi—>_<r)] if icR° (31)
under this strategy, the point estimator of Y is t'7 = yr + kl(; —;(j +k, (>_( —>_<r). ..(3.2)
y, _ if ieR
=i Y [l t)etx ) f, if iR (3-2)
Q- £)| 6% +0-6,)x
under this , the estimator of Y is té =L (3.3)
O Xr +(1—01)x
Y _ if ieR
Yao=q Y | X g if icRe (3.4)
(- fl){ezx +(1-0,)x }
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. _ , v,
Hence the estimator of Y is tg=—o — (3.5
0, x+(1-6,)x
Yi . if ieR
Yio Yo . S if ieR° (36)
1-f,)| g.x, +(1-0,)x
- . Yy, X
Hence the estimator of Y is tg=—— Y (3.7
Oz xr +(1— 63 )x
Bias and M.S.E. of Proposed Methods
Let B(.); and M(.); denote the bias and mean squared error (M.S.E.) of an estimator under a given sampling design t = I, Il, then the
bias and m.s.e of t;,tg, tyand t,. The proofs of all these results are similar and therefore we will proof only one of them i.e.
theorem 4.1.
Theorem 4.1: Estimator t'7 interms of e ; i=12,3 and e, could be expressed:

t,=Y(1+e )+ le(eg —e3)+ sz(e3 —ez)

(4.1)

by ignoring the terms E[ei'ej], Ek{(e]f )S]for r+s>2, where r,s=012,..and i=123;j=2,3 which is first order of

approximation.
Proof: t; =y, + kl(; —>_<) + kz(;< —)_(r>
=Y(+e)+ le(e'3 —e, )+ sz(e3 —e2)

The estimator t'7 is an unbiased estimator under both the designs I and 11 i.e.

B[tl7]l =0
B[t;]u =0
Proof:

B(,), =€, -v] =¥ -v =0
Bt, ), =€, -V}, =Y - =0

The variance of t'7 , under design I and 11, upto first order of approximation could be written as:

V(tl7 )| = 5153 +(52 _53)(k125>2< — 2K, pSy Sy )+ (51 _52)(k223>2< —2K, P8y Sx )
V(tl7)u = 0,5 +(03+ 55 k('S — 2k 555y Sy +(6, _55)(k225>2< —2k2pSYSX)

Proof:V(t;): E[t7 —\7]2 = E[\?el + klf(e'3 —e3)+ sz(e3 —e, )]2
= E_\?Zef kX (e —e,F +k2X (e, -6, f +2k Y X(e,—e, ),

+ 2k1szz(e‘3 —e, Xe3 —e2)+ 2k2\7f(e3 -6, )el]

m

Yie2 4 kf?z(egz +e? —2e3e'3j + kgiz(eg +el - 2e2e3) + ZKlVY(ele's —e1e3)

T okky X (e3e'3 —eZ —ee;+6,6, )+ ZKZVY(el% —ee, )}
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Under Design | (Using (4.6))
A Rvi 2, ,2v2 2 2 2 2y 2 2 2 2

o= =2
+2|<1Yx(53chcX —52pCYCX)+ ky ky X (53c:§ ~65,C2 —5,C% +52c§)
+2k2\?y<52PCYCx —01pCy Cy )]

=[\?2 5,C2 +K2X C2 (6, -8 )+ +k2X C2(5,-5,)

+2k; Y X (33 =8, )pCy Cy +2k,Y X (8, =31 )pCy Cy ]
= [5153 +(5, —53){kfs§ — 2k oSy Sy }+(§l—52){k225>2< — 2k, 05, Sy }]

Under Design 11 (Using (4.6))

Vi), {\?2 5,C2 +k2X (5,02 +6,C2 J+ kEX (5sC2 +5,C2 —26,C2 )
+2k1\7i(—55chcx )+ 2k1k2Y2(—550§ +65C2 )+ ZkZVY((sSpCYcX —54chcx) }

= {?2 S54CY +k{S% (83 + 35 )+ k3 S5 (84 — 55)— 2KyS505y Sy — 2K, (84 —85)pSy Sx }

= 8,87 +(83+ 85 Ki'S% — 2Ky S +(64 _55)(k225>2< —2k2pSYSX)

The minimum variance of the t; is

[V(t7) ]M.n :[51_(51_53) 2] S\? 4.7)
V), . =[6. — (5,6, +5.8, —8,8, )6, +8,) " p?] s2 (4.8)
Proof:
First differentiate (4.4) with respectto k, and k, and then equate to zero, we get

. S
dikl ( )] _Ojkl_pSSY and di (t7)|] 0=k, :pi

After replacing value of 8, in (4.4) , we obtained
[V(t7 )I ]Min = [51 - (51 — 03 )Pz] S\?

Similar to (i), we proceed for (4.5), we have

dikl (t'7)||] :03k1=(5555 jpsy and % (t%)“] :O:kzng—l

V), . =[6. — (65,6, +8.8, —8,8, )&, +,) " p?] s2

Theorem 4.2: The estimator té interms of e ,e,,e, and e, is
t, =Y[l+e, +6,(e, —e, —ee, +ee, +(1-26, e,e, + 6,02 —(1-6,)e? | (4.9)

The bias of the estimator té under design | and Il respectively is
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B(tzla )| = V(51 —0, )(‘912@2( —0, pCyCx )
B(tf'i )u = \?(54 —05 )(912C>2< -6, pCyCy )

Mean squared error of té under design under design | and 11 respectively is:

M (ts )| = ?2 [510\? + (51 -5 )(‘912(:)2( —26,pCyCy )]
M (ta )u =y’ [54(:3 + (54 — 05 ){‘912(:)2( —26,pCyCy }]

The minimum m.s.e. of g is

[M (té)| ]Min = [51 —(6,-0, ),02 ]SYZ when 6, = Pg—;

MGa ) Jo =104 ~(6 - 35)0% 52 when - Pg—l

Theorem 4.3:
The estimator ty in terms of e;,e,,e; and e, is

tg = \7[1+ e +6, (eg — ey +e18; —ereg — (1+ 20, Jege,, + 0,65 +(1+ 6, )e§ ﬂ
The bias of the estimator t;, under design | and Ilrespectively is:

B(t§)| :V(52 _53)<‘922C>2< —0,CyCy )

B(tsla )u :?([ 922(53 + 55)+ 030, ]C>2< —0,05pCyCx )

Mean squared error of t§ under design | and llrespectively is:
' =2

Mty ), =V [5.02 + (5, - 8, 62C2 —26,0C,Cy )|
' =2

M (t9 )u =Y [54(:3 + (53 + 55)9220>2< —26,65pCyCx ]

The minimum m.s.e. of t;, is

[M (té )| ]Min = [51 _(52 — 83 )P2 ]53 when 8, = pg—l

[M (tsla)n ]Min = [54 — 5205+ 65) " P ]S\? when 6, =( % JPC—Y

Theorem 4.4: The estimator t,, in terms of e;,e,,e; and e; is
. . . 2 2 -
to = Y{1+ e + 93(e3 —e, +e;— €€, + 0,85 + 083 —€3 — eze3ﬂ

The bias of the estimator tio under design | and llrespectively is:
B(tio)| :\7(932 (51 +03 )C>2< - 253‘93C>2< -0, (51 —03 )PCY Cx )
Bltiohy =V(02(64 + )03 ~3:0,C% 0,040, )

Mean squared error of underdesign I and llrespectively is:
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M), =V [5,02 +(5, -5, No2C2 —20,00,Cy |
M (tio)u =y [5403 +(0;+8,)05C%, —2035,7Cy Cx ]

The minimum m.s.e. of tio is

[M (tio)| ]Min = [51 —(6,-83)p° ]S\? when 6; = PCC:—:(

[M (tio)u ]Min = [54 - 5;(63+6, )71,02]53 when 6; = [L]PC—Y

Comparisons

A, = minb/(p) ] —minV(t,), ]

1 1 2 2
=l =—-= SZ+___’ ZSZ
{n N}* [N n}py

(t'7 ), is better than t,,ifA;5 > 0

1 1], (1 1
:>2—|—— <|—F——
[n N}p (n NJ
—>—£< <1
2 P73

(55— 0.] 87 =[[ (53 +6,) 162 +(5, - 55) }- 15 7S
(t'7 )” is better than t,, if A, > 0
(513—54)(53 +55)

[513(53 +55)—{ 552 +(54 —55)(53 +55)}]
= -E<p< E

~minly ()] -minfr )] <| - X o7

A15 n N
(tg), is better than tg,  ifA;5 > 0

= p? <

= N‘—n >0=N-n >0 =>n <N
nN

which is always true.

Alezminﬁ/(tg) ] —min[\/(tg)”] ={ ! —i}SYZ

N-n N
(tg)“ is better than tg, if Ay > 0

= N—N+n'_>0 =n'>0
N(N-n |

Ay7 = minﬁ/(tg) ] —mini/(té)l]

1 1], [2 27 ..,
=| == |S¢+| ——=|p°S
Pk
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(tl'7)| is better than tq, ifA;; > 0 = p’ < % = —% <p <%

A18=minL/(t9) ] —min[\/(tg)”] =[64-64] S [515 (85 +55) 55] p?S2 (tg)” is better than tq, if Ay > 0

= p? < (614 =8 )35 +55) = -F<p< F

[515(53 + 55)— 552]

Algzminil(tlo) ] —mithio),] :[%—%}SYZ {%_rﬂ 252 (tio)u is better than t,q,if Ag > 0

—>2i—i ’ < 1 —>—£< <l
n Np n N 2 » 2

which is always true.

Ay =min(t,) | ~minfve,),] =[5.-0.] 82 -[5,-(6,+5,)57] ps:
( ) is better than t,,, if

Ay >0 = p? < (916 = 54 J0 + 54) = -G<p< G

[516(53 + 54)_ 53]

Numerical Illustrations

We consider two populations A and B, first one is the artificial population of size N = 200 [source Shukla and Thakur (2008)]° and
another one is from Ahmed et al. (2006)° with the following parameters:

Table-1
Population Parameters
Population N Y X S2 s2 P Cy C,
A 200 42.485 18.515 199.0598 48.5375 0.8652 0.3763 0.3321
B 8306 253.75 343.316 338006 862017 0.522231 2.70436 2.29116

Let n'=60, n= 40, r=5 for population A and n'= 2000, n= 500, r= 15 for population B respectively. Then the bias and
M.S.E of suggested estimators under design | and Il (using the expressions of bias and m.s.e. of Section 4) and Ahmed et al.
(2006) methods (see Remark-1) are given in table 2, 3 and 4 for population A and B respectively.

Table-2
Bias and MSE for Population — A
Estimators DESIGN I DESIGN II
Bias MSE Bias MSE
t, 0 10.91418 0 38.71673
tg -1.40126E-06 10.41748 -5.95325E-05 12.31328
tg 2.66906E-08 35.33217 26202 36.78069
to -.025405 9.255346 1325.124 11.29167
Table-3
Bias and MSE for Population — B
Estimators DESIGN I DESIGN 11
Bias MSE Bias MSE
t, 0 16300.3 0 22485.14
tg 0.00000381 16403.58 0.00000974 16518.98
tg 0.00000006 21754.44 -0.26502 22339.4
to -0.34747 15793.29 9.819971 16384.03
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Table-4
Bias and MSE for Population A and B for Ahmed et al. (2006)
Estimators Population A Population B
Bias MSE Bias MSE
t, 0 9.759633 0 16358.62
ty -.0000595 12.73984 -0.09258 16531.89
ty -.0000068 35.83645 -0.09527097 22319.77
to -.0000663 9.759633 0.095271 16358.62
The sampling efficiency of suggested estimators under design I and 11 over Ahmed et al. is defined as:
Opt[(M(t, ).
: =M; i =78,9,10; j=0L1 ()
optm(t, )]
The efficiency for population A and B respectively given in table-5.
Table-5
Efficiency for Population A and B over Ahmed et al. (2006)°
Estimators Population A Population B

Design | Design 11 Design | Design |1
E, 1.118298 3.967027 0.996435 1.374513
E, 0.817709 0.966518 0.992239 0.999219
E, 0.985928 1.026349 0.974671 1.000879
E, 0.948329 1.156977 0.965441 1.001553

Remark-1: Under the setup when the population mean is known of auxiliary variable is known Ahmed et al. (2006) proposed
some imputation methods and derived their properties. From which authors are discussing with four methods of them for

comparison purposee. Let y, denotes the i available observation for the jth imputation and k; ,i=12and 6, ,i=123 is a
suitably chosen constant, such that the variance the resultant estimator is minimum. Imputation methods are :

Y, if ieR
y7| =
v, + (nm_(lr) (X =X)+k,(x =x.) if iR
Under this method, the point estimator of Y is t, =§/r +k1(f—>_<)+ k2(>_<—>_<r)
Lemma 1: The bias, variance and minimum variance at k; =k, = % of t, isgivenby
S

Blt,]=0 "

v(t7) :G_%jsg —25xv [kl[%—%)+kz(%—%ﬂ+si[kf[%—%)+k§[%_%ﬂ

_ L if ieR®
Oxr +(1-6)x n-r’"
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Under this method, the point estimator of Y is tg =A (6.7)
Oy xr +(1—6,)x
Lemma 2: The bias, mean squared error and minimum mean squared error at lepC—Yof ty is given by
Cx
1 1) g
B(tg)z[F—Hj Y (efci —HlpCYCX) (6.8)
=2|(1 1 2 2 1 1 2 1 1
Mits | =Y ||=—— Cy +6 | =—=|Cx —26,| ——— C 6.9
) V| (B fet e ai(2-2e -an(2-2ercy | ©69)
11 1 1)S%
Moy =32 Jst-(2-2)5
X (6.10)
Yi if ieR
L= v X — 6.11
y9| l _ nyrx __ryr |f ieRC ( )
(n=r)[ 6,x +(1-6,)X
_ - _ v X
Under this method, the point estimator of Y is tg=—————= (6.12)
0, x+([1-6,)X
. - C -
Lemma 3: The bias, mean squared error and minimum mean squared error at 6, = p—— of ty is given by
X
1 1)
B(tg)z[ﬁ—ﬁj Y (ezzci —ezchcx) (6.13)
S21(1 1), o1 1).» 1 1
Mit, ] =Y ||=——=|Cy +65| =—— [Cx —20,| ——— |pC,C 6.14
(9) Kr N) Y 2£n Nj X 2(n ij Y x} (6.14)
11 1 1)S%
'V'(tg )min z(;—ﬁjsvz —[ﬁ‘ﬁ)s_x;
X (6.15)
Yi if ieR
= v X — o 6.16
Yo ! ML [ SA—_TE if ieRC (6.16)
(N=r)| Gyx: +L-6;)X
Under this, the point estimator of population mean Y is tm:_y,—X_ (6.17)
0, +(1-6,)X
Lemma 4: The bias, variance and minimum variance at 03=pC—Yof t,, is given by
CX
1 1Yo
B(tlo)z(?—ﬁj Y (p2c2 —HSpCYCX) (6.18)
c2(1 1
M(tlo) ~Y (F_WJ[CYZ +05Cx —293chcX] (6.19)
1 1
M(th)min =[F—W\JS$(1—,02) (6.20)
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Discussion

We considered, in the present research paper the study of some imputation methods in presence of missing observations under two
phase sampling design while the number of responds is constant. But in practice it is not possible and the number of missing
observations may be varying sample to sample. In such case the authors also extended suggested methods in case when number of
respondent is varying.

Conclusion

The proposed estimators are useful when some observations are missing in the sample and population mean of auxiliary
information is unknown. Table-2 and 3, clearly indicates that the class of suggested estimatorsare more efficient in design | than
design Il. So, we can conclude that design I is better than design Il. Table-4 shows bias and m.s.e for population A and B for
Ahmed et al. (2006). It is also observed from table-5 that the suggested strategies are very close with Ahmed et al.°.
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