Some Imputation Methods in Double Sampling Scheme to Estimate the Population Mean

Narendra Singh Thakur ${ }^{1}$, Kalpana Yadav ${ }^{2}$ and Sharad Pathak ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan, INDIA
${ }^{2}$ Department of Statistics, Delhi University, Delhi, INDIA
${ }^{3}$ Department of Mathematics and Statistics, Dr. H.S. Gour Central Univesity, Sagar, MP, INDIA

Available online at: www.isca.in, www.isca.me
Received $13^{\text {th }}$ August 2013, revised $1^{\text {st }}$ September 2013, accepted $10^{\text {th }}$ October 2013

Abstract

In this paper, various imputation methods for missing values in double sampling scheme are suggested. Two different sampling designs in double sampling scheme are compared under imputed data. For different suggested estimators the bias and m.s.e up to the first order approximation are derived. Numerical study is performed over two populations using the expressions of bias and m.s.e and also efficiency compared with Ahmed estimators.

Keywords: Estimation, missing data, bias, mean squared error (m.s.e.), double sampling scheme, srswor, large sample approximation.

Introduction

Let us consider $\mathrm{U}=(1,2,3 \ldots . \mathrm{N})$ be the finite population of size N and the character under study be denoted by y . Also, x be the ancillary variable which is highly correlated with study variable. If the population mean \bar{X} of the auxiliary variable x is unknown, then in such case the suggested estimator do not play satisfactory role in estimation ${ }^{1,2}$. In such case the idea of two-phase sampling is helpful. A large preliminary simple random sample (without replacement) S^{\prime} of n^{\prime} units is drawn from the population on U and a secondary sample S of size $n\left(n<n^{\prime}\right)$ is drawn in either following ways: i. the sample S is as a sub-sample from sample S^{\prime} (design I) as in figure 1, and ii. the sample S is independent to sample S^{\prime} without replacing S^{\prime} in the population (design II) as in figure 2 .

Further, the sample S can be divided into two non-overlapping sub groups, i. the set of responding units, by R , and that of nonresponding units by R^{c} and ii. the number of responding units out of sampled n units be denoted by $r(r<n)$.

For every unit $i \in R \quad y_{i}$ is observed, but for the units $i \in R^{c}$, the y_{i} are missing and instead imputed values are derived. The $i^{\text {th }}$ value x_{i} of auxiliary variate is used as a source of imputation for missing data when $i \in R^{C}$. Assume for S , the data $x_{s}=\left\{x_{i}: i \in S\right\}$ and for $i^{\prime} \in S^{\prime}$, the data $\left\{x_{i}: i^{\prime} \in S^{\prime}\right\}$ are known with mean $\bar{x}=(n)^{-1} \sum_{i=1}^{n^{n}} x_{i}$ and $\bar{x}=\left(n^{\prime}\right)^{-1} \sum_{i=1}^{n^{n}} x_{i}$ respectively ${ }^{3}$. The symbols that used are: \bar{X}, \bar{Y} : the population mean of x and y respectively; $x, y:$ the sample mean of x and y respectively;
\bar{x}_{r}, \bar{y}_{r} : the sample mean of x and y respectively; $\rho_{x y}$: the correlation coefficient between x and y;
S_{x}^{2}, S_{y}^{2} : the population mean squares of x and y respectively; C_{x}, C_{y} : the coefficient of variation of x and y respectively;

$$
\begin{aligned}
& \delta_{1}=\left(\frac{1}{r}-\frac{1}{n^{\prime}}\right) ; \delta_{2}=\left(\frac{1}{n}-\frac{1}{n^{\prime}}\right) ; \delta_{3}=\left(\frac{1}{n^{\prime}}-\frac{1}{N}\right) ; \delta_{4}=\left(\frac{1}{r}-\frac{1}{N-n^{\prime}}\right) ; \delta_{5}=\left(\frac{1}{n}-\frac{1}{N-n^{\prime}}\right) ; f_{1}=\frac{r}{n}, \\
& E=\frac{\left(\delta_{13}-\delta_{4}\right)\left(\delta_{3}+\delta_{5}\right)}{\left[\delta_{13}\left(\delta_{3}+\delta_{5}\right)-\left\{\delta_{5}^{2}+\left(\delta_{4}-\delta_{5}\right)\left(\delta_{3}+\delta_{5}\right)\right\}\right]}, F=\frac{\left(\delta_{14}-\delta_{4}\right)\left(\delta_{3}+\delta_{5}\right)}{\left[\delta_{15}\left(\delta_{3}+\delta_{5}\right)-\delta_{5}^{2}\right]}, G=\frac{\left(\delta_{16}-\delta_{4}\right)\left(\delta_{3}+\delta_{4}\right)}{\left[\delta_{16}\left(\delta_{3}+\delta_{4}\right)-\delta_{4}^{2}\right]} .
\end{aligned}
$$

Figure-1
Sample S is as a sub-sample from sample S^{\prime}

Figure-2
Sample \mathbf{S} is independent to sample S without replacing S in the population

Large Sample Approximations

Let us consider $\bar{y}_{r}=\bar{Y}\left(1+e_{1}\right) ; \bar{x}_{r}=\bar{X}\left(1+e_{2}\right) ; \bar{x}=\bar{X}\left(1+e_{3}\right)$ and $\bar{x}=\bar{X}\left(1+e_{3}^{\prime}\right)$. Now by using the concept of double sampling scheme and the mechanism of MCAR ${ }^{4}$, for given r, n and n we have:

Designs	$\boldsymbol{E}\left(\boldsymbol{e}_{i}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{3}^{\prime}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{1}^{2}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{2}^{2}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{3}^{2}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{3}^{\mathbf{\prime 2}}\right)$
\mathbf{I}	0	0	$\delta_{1} C_{r}^{2}$	$\delta_{1} C_{x}^{2}$	$\delta_{2} C_{X}^{2}$	$\delta_{3} C_{x}^{2}$
II	0	0	$\delta_{4} C_{r}^{2}$	$\delta_{4} C_{x}^{2}$	$\delta_{5} C_{x}^{2}$	$\delta_{3} C_{x}^{2}$

Designs	$\boldsymbol{E}\left(\boldsymbol{e}_{1} \boldsymbol{e}_{2}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{1} \boldsymbol{e}_{3}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{1} \boldsymbol{e}_{3}^{\prime}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{2} \boldsymbol{e}_{3}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{2} \boldsymbol{e}_{3}^{\prime}\right)$	$\boldsymbol{E}\left(\boldsymbol{e}_{3} \boldsymbol{e}_{3}^{\prime}\right)$
I	$\delta_{1} \rho C_{Y} C_{X}$	$\delta_{2} \rho C_{Y} C_{X}$	$\delta_{3} \rho C_{Y} C_{X}$	$\delta_{2} C_{X}^{2}$	$\delta_{3} C_{X}^{2}$	$\delta_{3} C_{X}^{2}$
II	$\delta_{4} \rho C_{Y} C_{X}$	$\delta_{5} \rho C_{Y} C_{X}$	0	$\delta_{5} C_{X}^{2}$	0	0

Proposed Strategies

Let $y_{j i}^{\prime}$ denotes the $i^{\text {th }}$ observation of the $j^{\text {th }}$ imputation strategy and b_{1}, b_{2}, b_{3} are constants such that the variance of obtained estimators of \bar{Y} is minimum. We suggest the following tools of imputation:
$y_{7 i}^{\prime}= \begin{cases}y_{i} & \text { if } \\ \bar{y}_{r}+\frac{1}{\left(1-f_{1}\right)}\left[k_{1}(\bar{x}-\bar{x})+\left(1-f_{1}\right) k_{2}\left(x_{i}-\bar{x}_{r}\right)\right] \\ & \text { if } \\ i \in R^{C}\end{cases}$
under this strategy, the point estimator of \bar{Y} is

$$
\begin{equation*}
t_{7}^{\prime}=\bar{y}_{r}+k_{1}\left(\bar{x}^{\prime}-\bar{x}\right)+k_{2}\left(\bar{x}-\bar{x}_{r}\right) \tag{3.2}
\end{equation*}
$$

$y_{8 i}^{\prime}=\left\{\begin{array}{ll}y_{i} \overline{y_{r}} \\ \left(1-f_{1}\right) & {\left[\frac{\left(x_{i}\left(1-f_{1}\right)+f_{1} \bar{x}_{r}\right)}{\theta_{1} \bar{x}_{r}+\left(1-\theta_{1}\right) \bar{x}}-f_{1}\right] \quad}\end{array} \quad \begin{array}{l}\text { if } \quad i \in R \\ \text { if } \quad i \in R^{c}\end{array}\right.$
under this, the estimator of \bar{Y} is

$$
t_{8}^{\prime}=\frac{\bar{y}_{r} \bar{x}}{\theta_{1} \bar{x}_{r}+\left(1-\theta_{1}\right) \bar{x}}
$$

$$
y_{9 i}^{\prime}=\left\{\begin{array}{ll}
y_{i} \tag{3.4}\\
\frac{y_{r}}{\left(1-f_{1}\right)}
\end{array}\left[\frac{\bar{x}_{r}}{\theta_{2} \bar{x}+\left(1-\theta_{2}\right) \overline{x^{\prime}}}-f_{1}\right] \quad \text { if } \quad i \in R ~ 子 \quad \text { if } \quad i \in R^{c}\right.
$$

Hence the estimator of \bar{Y} is

$$
\begin{equation*}
t_{9}^{\prime}=\frac{\bar{y}_{r} \overline{\bar{x}}^{\prime}}{\theta_{2} \bar{x}+\left(1-\theta_{2}\right)^{-\dot{x}}} \tag{3.5}
\end{equation*}
$$

$y_{10 i}^{\prime}=\left\{\begin{array}{l}y_{i} \overline{y_{r}} \\ \left(1-f_{1}\right)\end{array} \frac{\bar{x}}{\left.\frac{-}{\theta_{3} \bar{x}_{r}+\left(1-\theta_{3}\right)^{-\prime}}-f_{1}\right] \quad \text { if } \quad i \in R}\right.$
Hence the estimator of \bar{Y} is

$$
\begin{equation*}
t_{10}^{\prime}=\frac{\bar{y}_{r} \bar{x}^{\prime}}{\theta_{3} \bar{x}_{r}+\left(1-\theta_{3}\right)^{-\bar{x}^{\prime}}} \tag{3.7}
\end{equation*}
$$

Bias and M.S.E. of Proposed Methods

Let $B(.)_{\mathrm{t}}$ and $M(.)_{\mathrm{t}}$ denote the bias and mean squared error $(M . S . E$.$) of an estimator under a given sampling design \mathrm{t}=I, I I$, then the bias and m.s.e of $t_{7}^{\prime}, t_{8}^{\prime}, t_{9}^{\prime}$ and t_{10}^{\prime}. The proofs of all these results are similar and therefore we will proof only one of them i.e. theorem 4.1.

Theorem 4.1: Estimator t_{7}^{\prime} in terms of $e_{i} ; i=1,2,3$ and e_{3}^{\prime} could be expressed:

$$
\begin{equation*}
t_{7}^{\prime}=\bar{Y}\left(1+e_{1}\right)+k_{1} \bar{X}\left(e_{3}^{\prime}-e_{3}\right)+k_{2} \bar{X}\left(e_{3}-e_{2}\right)^{\prime} \tag{4.1}
\end{equation*}
$$

by ignoring the terms $E\left[e_{i}^{r} e_{j}^{s}\right], E\left[e_{i}^{r}\left(e_{j}^{\prime}\right)^{s}\right]$ for $r+s>2$, where $r, s=0,1,2, \ldots$ and $i=1,2,3 ; j=2,3$ which is first order of approximation.
Proof: $t_{7}^{\prime}=\bar{y}_{r}+k_{1}\left(\bar{x}^{\prime}-\bar{x}\right)+k_{2}\left(\bar{x}-\bar{x}_{r}\right)$

$$
=\bar{Y}\left(1+e_{1}\right)+k_{1} \bar{X}\left(e_{3}^{\prime}-e_{3}\right)+k_{2} \bar{X}\left(e_{3}-e_{2}\right)
$$

The estimator t_{7}^{\prime} is an unbiased estimator under both the designs I and $I I$ i.e.

$$
\begin{align*}
& B\left[t_{7}^{\prime}\right]_{I}=0 \tag{4.2}\\
& B\left[t_{7}^{\prime}\right]_{I I}=0 \tag{4.3}
\end{align*}
$$

Proof:

$$
\begin{aligned}
& B\left(t_{7}^{\prime}\right)_{I}=E\left[t_{7}^{\prime}-\bar{Y}\right]_{I}=\bar{Y}-\bar{Y}=0 \\
& B\left(t_{7}^{\prime}\right)_{I I}=E\left[t_{7}^{\prime}-\bar{Y}\right]_{I I}=\bar{Y}-\bar{Y}=0
\end{aligned}
$$

The variance of t_{7}, under design I and $I I$, upto first order of approximation could be written as:

$$
\begin{align*}
& V\left(t_{7}^{\prime}\right)_{I}=\delta_{1} S_{Y}^{2}+\left(\delta_{2}-\delta_{3}\right)\left(k_{1}^{2} S_{X}^{2}-2 k_{1} \rho S_{Y} S_{X}\right)+\left(\delta_{1}-\delta_{2}\right)\left(k_{2}^{2} S_{X}^{2}-2 k_{2} \rho S_{Y} S_{X}\right) \tag{4.4}\\
& V\left(t_{7}^{\prime}\right)_{I I}=\delta_{4} S_{Y}^{2}+\left(\delta_{3}+\delta_{5}\right) k_{1}^{2} S_{X}^{2}-2 k_{1} \delta_{5} \rho S_{Y} S_{X}+\left(\delta_{4}-\delta_{5}\right)\left(k_{2}^{2} S_{X}^{2}-2 k_{2} \rho S_{Y} S_{X}\right) \tag{4.5}
\end{align*}
$$

Proof: $V\left(t_{7}^{\prime}\right)=E\left[t_{7}^{\prime}-\bar{Y}\right]^{2}=E\left[\bar{Y} e_{1}+k_{1} \bar{X}\left(e_{3}^{\prime}-e_{3}\right)+k_{2} \bar{X}\left(e_{3}-e_{2}\right)\right]^{2}$
$=E\left[\bar{Y}^{2} e_{1}^{2}+k_{1}^{2} \bar{X}^{2}\left(e_{3}^{\prime}-e_{3}\right)^{2}+k_{2}^{2} \bar{X}^{2}\left(e_{3}-e_{2}\right)^{2}+2 k_{1} \bar{Y} \bar{X}\left(e_{3}^{\prime}-e_{3}\right) e_{1}\right.$
$\left.+2 k_{1} k_{2} \bar{X}^{2}\left(e_{3}^{\prime}-e_{3}\right)\left(e_{3}-e_{2}\right)+2 k_{2} \bar{Y} \bar{X}\left(e_{3}-e_{2}\right) e_{1}\right]$
$=E\left[\bar{Y}^{2} e_{1}^{2}+k_{1}^{2} \bar{X}^{2}\left(e_{3}^{\prime 2}+e_{3}^{2}-2 e_{3} e_{3}^{\prime}\right)+k_{2}^{2} \bar{X}^{2}\left(e_{3}^{2}+e_{2}^{2}-2 e_{2} e_{3}\right)+2 k_{1} \bar{Y} \bar{X}\left(e_{1} e_{3}^{\prime}-e_{1} e_{3}\right)\right.$

$$
\left.+2 k_{1} k_{2} \bar{X}^{2}\left(e_{3} e_{3}^{\prime}-e_{3}^{2}-e_{2} e_{3}^{\prime}+e_{2} e_{3}\right)+2 k_{2} \bar{Y} \bar{X}\left(e_{1} e_{3}-e_{1} e_{2}\right)\right]
$$

Under Design I (Using (4.6))

$$
\begin{aligned}
& V\left(t_{7}^{\prime}\right)_{I}=\left[\begin{array}{r}
\bar{Y}^{2} \delta_{1} C_{Y}^{2}+k_{1}^{2} \bar{X}^{2}\left(\delta_{3} C_{X}^{2}+\delta_{2} C_{X}^{2}-2 \delta_{3} C_{X}^{2}\right)+k_{2}^{2} \bar{X}^{2}\left(\delta_{2} C_{X}^{2}+\delta_{1} C_{X}^{2}-2 \delta_{2} C_{X}^{2}\right) \\
\quad+2 k_{1} \bar{Y} \bar{X}\left(\delta_{3} \rho C_{Y} C_{X}-\delta_{2} \rho C_{Y} C_{X}\right)+k_{1} k_{2} \bar{X}^{2}\left(\delta_{3} C_{X}^{2}-\delta_{2} C_{X}^{2}-\delta_{3} C_{X}^{2}+\delta_{2} C_{X}^{2}\right) \\
\\
\left.\quad+2 k_{2} \bar{Y} \bar{X}\left(\delta_{2} \rho C_{Y} C_{X}-\delta_{1} \rho C_{Y} C_{X}\right)\right]
\end{array}\right. \\
& \begin{aligned}
= & \bar{Y}^{2} \delta_{1} C_{Y}^{2}+k_{1}^{2} \bar{X}^{2} C_{X}^{2}\left(\delta_{2}-\delta_{3}\right)++k_{2}^{2} \bar{X}^{2} C_{X}^{2}\left(\delta_{1}-\delta_{2}\right) \\
= & {\left[\delta_{1} S_{Y}^{2}+\left(\delta_{2}-\delta_{3}\right)\left\{k_{1}^{2} S_{X}^{2}-2 k_{1} \rho S_{Y} S_{X}\right\}+\left(\delta_{1}-\delta_{2}\right)\left\{\delta_{2}^{2} S_{X}^{2}-2 k_{2} \rho S_{Y} S_{X}\right\}\right] }
\end{aligned}
\end{aligned}
$$

Under Design II (Using (4.6))

$$
\begin{aligned}
& V\left(t_{7}^{\prime}\right)_{I I}=\left[\bar{Y}^{2} \delta_{4} C_{Y}^{2}+k_{1}^{2} \bar{X}^{2}\left(\delta_{3} C_{X}^{2}+\delta_{5} C_{X}^{2}\right)+k_{2}^{2} \bar{X}^{2}\left(\delta_{5} C_{X}^{2}+\delta_{4} C_{X}^{2}-2 \delta_{5} C_{X}^{2}\right)\right. \\
& \left.+2 k_{1} \bar{Y} \bar{X}\left(-\delta_{5} \rho C_{Y} C_{X}\right)+2 k_{1} k_{2} \bar{X}^{2}\left(-\delta_{5} C_{X}^{2}+\delta_{5} C_{X}^{2}\right)+2 k_{2} \bar{Y} \bar{X}\left(\delta_{5} \rho C_{Y} C_{X}-\delta_{4} \rho C_{Y} C_{X}\right)\right] \\
& =\left[\bar{Y}^{2} \delta_{4} C_{Y}^{2}+k_{1}^{2} S_{X}^{2}\left(\delta_{3}+\delta_{5}\right)+k_{2}^{2} S_{X}^{2}\left(\delta_{4}-\delta_{5}\right)-2 k_{1} \delta_{5} \rho S_{Y} S_{X}-2 k_{2}\left(\delta_{4}-\delta_{5}\right) \rho S_{Y} S_{X}\right] \\
& =\delta_{4} S_{Y}^{2}+\left(\delta_{3}+\delta_{5}\right) k_{1}^{2} S_{X}^{2}-2 k_{1} \delta_{5} \rho S_{Y} S_{X}+\left(\delta_{4}-\delta_{5}\right)\left(k_{2}^{2} S_{X}^{2}-2 k_{2} \rho S_{Y} S_{X}\right)
\end{aligned}
$$

The minimum variance of the t_{7}^{\prime} is

$$
\begin{align*}
& {\left[V\left(t_{7}^{\prime}\right)_{I}\right]_{\text {Min }}=\left[\delta_{1}-\left(\delta_{1}-\delta_{3}\right) \rho^{2}\right] S_{Y}^{2}} \tag{4.7}\\
& {\left[V\left(t_{7}^{\prime}\right)_{I I}\right]_{\text {Min }}=\left[\delta_{4}-\left(\delta_{3} \delta_{4}+\delta_{4} \delta_{5}-\delta_{3} \delta_{5}\right)\left(\delta_{3}+\delta_{5}\right)^{-1} \rho^{2}\right] S_{Y}^{2}} \tag{4.8}
\end{align*}
$$

Proof:

First differentiate (4.4) with respect to k_{1} and k_{2} and then equate to zero, we get

$$
\frac{d}{d k_{1}}\left[V\left(t_{7}^{\prime}\right)_{I}\right]=0 \Rightarrow k_{1}=\rho \frac{S_{Y}}{S_{X}} \text { and } \frac{d}{d k_{2}}\left[V\left(t_{7}^{\prime}\right)_{I}\right]=0 \Rightarrow k_{2}=\rho \frac{S_{Y}}{S_{X}}
$$

After replacing value of β_{1} in (4.4), we obtained

$$
\left[V\left(t_{7}^{\prime}\right)_{I}\right]_{\text {Min }}=\left[\delta_{1}-\left(\delta_{1}-\delta_{3}\right) \rho^{2}\right] S_{Y}^{2}
$$

Similar to (i), we proceed for (4.5), we have

$$
\begin{aligned}
& \frac{d}{d k_{1}}\left[V\left(t_{7}^{\prime}\right)_{I I}\right]=0 \Rightarrow k_{1}=\left(\frac{\delta_{5}}{\delta_{3}+\delta_{5}}\right) \rho \frac{S_{Y}}{S_{X}} \text { and } \quad \frac{d}{d k_{2}}\left[V\left(t_{7}^{\prime}\right)_{I I}\right]=0 \Rightarrow k_{2}=\rho \frac{S_{Y}}{S_{X}} \\
& {\left[V\left(t_{7}^{\prime}\right)_{I I}\right]_{M i n}=\left[\delta_{4}-\left(\delta_{3} \delta_{4}+\delta_{4} \delta_{5}-\delta_{3} \delta_{5}\right)\left(\delta_{3}+\delta_{5}\right)^{-1} \rho^{2}\right] S_{Y}^{2}}
\end{aligned}
$$

Theorem 4.2: The estimator t_{8}^{\prime} in terms of e_{1}, e_{2}, e_{3} and e_{3}^{\prime} is

$$
\begin{equation*}
t_{8}^{\prime}=\bar{Y}\left[1+e_{1}+\theta_{1}\left(e_{3}-e_{2}-e_{1} e_{2}+e_{1} e_{3}+\left(1-2 \theta_{1}\right) e_{2} e_{3}+\theta_{1} e_{2}^{2}-\left(1-\theta_{1}\right) e_{3}^{2}\right)\right] \tag{4.9}
\end{equation*}
$$

The bias of the estimator t_{8}^{\prime} under design I and $I I$ respectively is

$$
\begin{align*}
& B\left(\dot{t}_{8}^{\prime}\right)_{I}=\bar{Y}\left(\delta_{1}-\delta_{2}\right)\left(\theta_{1}^{2} C_{X}^{2}-\theta_{1} \rho C_{Y} C_{X}\right) \tag{4.10}\\
& B\left(t_{8}^{\prime}\right)_{I I}=\bar{Y}\left(\delta_{4}-\delta_{5}\right)\left(\theta_{1}^{2} C_{X}^{2}-\theta_{1} \rho C_{Y} C_{X}\right) \tag{4.11}
\end{align*}
$$

Mean squared error of t_{8}^{\prime} under design under design I and $I I$ respectively is:
$M\left(t_{8}^{\prime}\right)_{I}=\bar{Y}^{2}\left[\delta_{1} C_{Y}^{2}+\left(\delta_{1}-\delta_{2}\right)\left(\theta_{1}^{2} C_{X}^{2}-2 \theta_{1} \rho C_{Y} C_{X}\right)\right]$
$M\left(t_{8}^{\prime}\right)_{I I}=\bar{Y}^{2}\left[\delta_{4} C_{Y}^{2}+\left(\delta_{4}-\delta_{5}\right)\left\{\theta_{1}^{2} C_{X}^{2}-2 \theta_{1} \rho C_{Y} C_{X}\right\}\right]$

The minimum m.s.e. of t_{8} is
$\left[M\left(t_{8}^{\prime}\right)_{I}\right]_{\text {Min }}=\left[\delta_{1}-\left(\delta_{1}-\delta_{2}\right) \rho^{2}\right] S_{Y}^{2} \quad$ when $\theta_{1}=\rho \frac{C_{Y}}{C_{X}}$
$\left[M\left(t_{8}^{\prime}\right)_{I I}\right]_{M i n}=\left[\delta_{4}-\left(\delta_{4}-\delta_{5}\right) \rho^{2}\right] S_{Y}^{2}$ when $\theta_{1}=\rho \frac{C_{Y}}{C_{X}}$

Theorem 4.3:

The estimator t_{9}^{\prime} in terms of e_{1}, e_{2}, e_{3} and e_{3}^{\prime} is
$t_{9}^{\prime}=\bar{Y}\left[1+e_{1}+\theta_{2}\left(e_{3}^{\prime}-e_{3}+e_{1} e_{3}^{\prime}-e_{1} e_{3}-\left(1+2 \theta_{2}\right) e_{3} e_{3}^{\prime}+\theta_{2} e_{3}^{2}+\left(1+\theta_{2}\right) e_{3}^{\prime 2}\right)\right]$
The bias of the estimator t_{9}^{\prime} under design I and IIrespectively is:
$B\left(t_{9}^{\prime}\right)_{I}=\bar{Y}\left(\delta_{2}-\delta_{3}\right)\left(\theta_{2}^{2} C_{X}^{2}-\theta_{2} \rho C_{Y} C_{X}\right)$
$B\left(t_{9}^{\prime}\right)_{I I}=\bar{Y}\left(\left[\theta_{2}^{2}\left(\delta_{3}+\delta_{5}\right)+\delta_{3} \theta_{2}\right] C_{X}^{2}-\theta_{2} \delta_{5} \rho C_{Y} C_{X}\right)$

Mean squared error of t_{9} under design I and IIrespectively is:

$$
\begin{align*}
& M\left(t_{9}^{\prime}\right)_{I}=\bar{Y}^{2}\left[\delta_{1} C_{Y}^{2}+\left(\delta_{2}-\delta_{3}\right)\left(\theta_{2}^{2} C_{X}^{2}-2 \theta_{2} \rho C_{Y} C_{X}\right)\right] \tag{4.19}\\
& M\left(t_{9}^{\prime}\right)_{I I}=\bar{Y}^{2}\left[\delta_{4} C_{Y}^{2}+\left(\delta_{3}+\delta_{5}\right) \theta_{2}^{2} C_{X}^{2}-2 \theta_{2} \delta_{5} \rho C_{Y} C_{X}\right] \tag{4.20}
\end{align*}
$$

The minimum m.s.e. of t_{9}^{\prime} is
$\left[M\left(t_{9}^{\prime}\right)_{I}\right]_{M i n}=\left[\delta_{1}-\left(\delta_{2}-\delta_{3}\right) \rho^{2}\right] S_{Y}^{2}$ when $\theta_{2}=\rho \frac{C_{Y}}{C_{X}}$
$\left[M\left(t_{9}^{\prime}\right)_{I I}\right]_{\text {Min }}=\left[\delta_{4}-\delta_{5}^{2}\left(\delta_{3}+\delta_{5}\right)^{-1} \rho^{2}\right] S_{Y}^{2}$ when $\theta_{2}=\left(\frac{\delta_{5}}{\delta_{3}+\delta_{5}}\right) \rho \frac{C_{Y}}{C_{X}}$

Theorem 4.4: The estimator t_{10}^{\prime} in terms of e_{1}, e_{2}, e_{3} and e_{3}^{\prime} is
$t_{10}^{\prime}=\bar{Y}\left[1+e_{1}+\theta_{3}\left(e_{3}^{\prime}-e_{2}+e_{1} e_{3}^{\prime}-e_{1} e_{2}+\theta_{3} e_{2}^{2}+\theta_{3} e_{3}^{\prime 2}-e_{3}^{\prime 2}-e_{2} e_{3}^{\prime}\right)\right]$
The bias of the estimator t_{10}^{\prime} under design I and IIrespectively is:

$$
\begin{align*}
& B\left(t_{10}^{\prime}\right)_{I}=\bar{Y}\left(\theta_{3}^{2}\left(\delta_{1}+\delta_{3}\right) C_{X}^{2}-2 \delta_{3} \theta_{3} C_{X}^{2}-\theta_{3}\left(\delta_{1}-\delta_{3}\right) \rho C_{Y} C_{X}\right) \tag{4.23}\\
& B\left(t_{10}^{\prime}\right)_{I I}=\bar{Y}\left(\theta_{3}^{2}\left(\delta_{4}+\delta_{3}\right) C_{X}^{2}-\delta_{3} \theta_{3} C_{X}^{2}-\theta_{3} \delta_{4} \rho C_{Y} C_{X}\right) \tag{4.24}
\end{align*}
$$

Mean squared error of underdesign I and IIrespectively is:

$$
\begin{align*}
& M\left(t_{10}^{\prime}\right)_{I}=\bar{Y}^{2}\left[\delta_{1} C_{Y}^{2}+\left(\delta_{1}-\delta_{3}\right)\left(\theta_{3}^{2} C_{X}^{2}-2 \theta_{3} \rho C_{Y} C_{X}\right)\right] \tag{4.25}\\
& M\left(t_{10}^{\prime}\right)_{I I}=\bar{Y}^{2}\left[\delta_{4} C_{Y}^{2}+\left(\delta_{3}+\delta_{4}\right) \theta_{3}^{2} C_{X}^{2}-2 \theta_{3} \delta_{4} \rho C_{Y} C_{X}\right] \tag{4.26}
\end{align*}
$$

The minimum m.s.e. of t_{10}^{\prime} is
$\left[M\left(t_{10}^{\prime}\right)_{I}\right]_{\text {Min }}=\left[\delta_{1}-\left(\delta_{1}-\delta_{3}\right) \rho^{2}\right] S_{Y}^{2}$ when $\theta_{3}=\rho \frac{C_{Y}}{C_{X}}$
$\left[M\left(t_{10}^{\prime}\right)_{I I}\right]_{\text {Min }}=\left[\delta_{4}-\delta_{4}^{2}\left(\delta_{3}+\delta_{4}\right)^{-1} \rho^{2}\right] S_{Y}^{2}$ when $\theta_{3}=\left(\frac{\delta_{4}}{\delta_{3}+\delta_{4}}\right) \rho \frac{C_{Y}}{C_{X}}$

Comparisons

$\Delta_{13}=\min \left[V\left(t_{7}\right)\right]-\min \left[V\left(t_{7}^{\prime}\right)_{I}\right]$
$=\left[\frac{1}{n^{\prime}}-\frac{1}{N}\right] S_{Y}^{2}+\left[\frac{2}{N}-\frac{2}{n^{\prime}}\right] \rho^{2} S_{y}^{2}$
$\left(t_{7}^{\prime}\right)_{\mathrm{I}}$ is better than t_{7}, if $\Delta_{13}>0$
$\Rightarrow 2\left[\frac{1}{n^{\prime}}-\frac{1}{N}\right] \rho^{2}<\left(\frac{1}{n^{\prime}}-\frac{1}{N}\right)$
$\Rightarrow-\frac{1}{2}<\rho<\frac{1}{2}$
$\Delta_{14}=\min \left[V\left(t_{7}\right)\right]-\min \left[V\left(t_{7}^{\prime}\right)_{I I}\right]$
$=\left[\delta_{13}-\delta_{4}\right] S_{Y}^{2}-\left[\left\{\left(\delta_{3}+\delta_{5}\right)^{-1} \delta_{5}^{2}+\left(\delta_{4}-\delta_{5}\right)\right\}-\delta_{13}\right] \rho^{2} S_{Y}^{2}$
$\left(t_{7}^{\prime}\right)_{\text {II }}$ is better than t_{7}, if $\Delta_{14}>0$
$\Rightarrow \rho^{2}<\frac{\left(\delta_{13}-\delta_{4}\right)\left(\delta_{3}+\delta_{5}\right)}{\left[\delta_{13}\left(\delta_{3}+\delta_{5}\right)-\left\{\delta_{5}^{2}+\left(\delta_{4}-\delta_{5}\right)\left(\delta_{3}+\delta_{5}\right)\right\}\right]}$ $\Rightarrow-E<\rho<E$
$\Delta_{15}=\min \left[V\left(t_{8}\right)\right]-\min \left[V\left(t_{8}^{\prime}\right)_{I}\right]=\left[\frac{1}{n^{\prime}}-\frac{1}{N}\right] S_{Y}^{2}$
$\left(t_{8}^{\prime}\right)_{\mathrm{I}}$ is better than t_{8}, \quad if $\Delta_{15}>0$
$\Rightarrow\left[\frac{N-n^{\prime}}{n^{\prime} N}\right]>0 \Rightarrow N-n^{\prime}>0 \quad \Rightarrow n^{\prime}<N$
which is always true.
$\Delta_{16}=\min \left[V\left(t_{8}\right)\right]-\min \left[V\left(t_{8}^{\prime}\right)_{I I}\right]=\left[\frac{1}{N-n^{\prime}}-\frac{1}{N}\right] S_{Y}^{2}$
$\left(t_{8}^{\prime}\right)_{\text {II }}$ is better than t_{8}, if $\Delta_{16}>0$
$\Rightarrow\left[\frac{N-N+n^{\prime}}{N\left(N-n^{\prime}\right)}\right]>0 \quad \Rightarrow n^{\prime}>0$
$\Delta_{17}=\min \left[V\left(t_{9}\right)\right]-\min \left[V\left(t_{9}^{\prime}\right)_{I}\right]$
$=\left[\frac{1}{n^{\prime}}-\frac{1}{N}\right] S_{Y}^{2}+\left[\frac{2}{N}-\frac{2}{n^{\prime}}\right] \rho^{2} S_{y}^{2}$
$\left(t_{17}^{\prime}\right)_{\text {I }}$ is better than t_{9}, if $\Delta_{17}>0 \quad \Rightarrow \rho^{2}<\frac{1}{2} \quad \Rightarrow-\frac{1}{2}<\rho<\frac{1}{2}$
$\Delta_{18}=\min \left[V\left(t_{9}\right)\right]-\min \left[V\left(t_{9}\right)_{I I}\right]=\left[\delta_{14}-\delta_{4}\right] S_{Y}^{2}-\left[\delta_{15}-\left(\delta_{3}+\delta_{5}\right)^{-1} \delta_{5}^{2}\right] \rho^{2} S_{Y}^{2}\left(t_{9}^{\prime}\right)_{\text {II }}$ is better than t_{9}, if $\Delta_{18}>0$
$\Rightarrow \rho^{2}<\frac{\left(\delta_{14}-\delta_{4}\right)\left(\delta_{3}+\delta_{5}\right)}{\left[\delta_{15}\left(\delta_{3}+\delta_{5}\right)-\delta_{5}^{2}\right]} \quad \Rightarrow-F<\rho<F$
$\Delta_{19}=\min \left[V\left(t_{10}\right)\right]-\min \left[V\left(t_{1_{0}^{\prime}}\right)_{I}\right]=\left[\frac{1}{n^{\prime}}-\frac{1}{N}\right] S_{Y}^{2}+\left[\frac{2}{N}-\frac{2}{n^{\prime}}\right] \rho^{2} S_{y}^{2} \quad\left(t_{10}^{\prime}\right)_{I}$ is better than t_{10}, if $\Delta_{19}>0$
$\Rightarrow 2\left[\frac{1}{n^{\prime}}-\frac{1}{N}\right] \rho^{2}<\left(\frac{1}{n^{\prime}}-\frac{1}{N}\right) \quad \Rightarrow-\frac{1}{2}<\rho<\frac{1}{2}$
which is always true.
$\Delta_{20}=\min \left[V\left(t_{10}\right)\right]-\min \left[V\left(t_{10}^{\prime}\right)_{I I}\right]=\left[\delta_{16}-\delta_{4}\right] S_{Y}^{2}-\left[\delta_{16}-\left(\delta_{3}+\delta_{4}\right)^{-1} \delta_{4}^{2}\right] \rho^{2} S_{Y}^{2}$
$\left(t_{10}\right)_{\text {II }}$ is better than t_{10}, if
$\Delta_{20}>0 \quad \Rightarrow \rho^{2}<\frac{\left(\delta_{16}-\delta_{4}\right)\left(\delta_{3}+\delta_{4}\right)}{\left[\delta_{16}\left(\delta_{3}+\delta_{4}\right)-\delta_{4}^{2}\right]} \quad \Rightarrow-G<\rho<G$

Numerical Illustrations

We consider two populations A and B, first one is the artificial population of size $N=200$ [source Shukla and Thakur (2008)] ${ }^{5}$ and another one is from Ahmed et al. (2006) ${ }^{6}$ with the following parameters:

Table-1
Population Parameters

Population	N	\bar{Y}	\bar{X}	S_{Y}^{2}	S_{X}^{2}	ρ	C_{X}	C_{Y}
\mathbf{A}	200	42.485	18.515	199.0598	48.5375	0.8652	0.3763	0.3321
\mathbf{B}	8306	253.75	343.316	338006	862017	0.522231	2.70436	2.29116

Let $n^{\prime}=60, n=40, r=5$ for population A and $n^{\prime}=2000, n=500, r=15$ for population B respectively. Then the bias and M.S.E of suggested estimators under design I and $I I$ (using the expressions of bias and m.s.e. of Section 4) and Ahmed et al. (2006) methods (see Remark-1) are given in table 2, 3 and 4 for population A and B respectively.

Table-2
Bias and MSE for Population - A

Estimators	DESIGN \boldsymbol{I}		DESIGN II	
	Bias	MSE	Bias	MSE
t_{7}^{\prime}	0	10.91418	0	38.71673
t_{8}^{\prime}	$-1.40126 \mathrm{E}-06$	10.41748	$-5.95325 \mathrm{E}-05$	12.31328
t_{9}^{\prime}	$2.66906 \mathrm{E}-08$	35.33217	.26202	36.78069
t_{10}^{\prime}	-.025405	9.255346	1325.124	11.29167

Table-3
Bias and MSE for Population - B

Estimators	DESIGN \boldsymbol{I}		DESIGN II	
	Bias	MSE	Bias	MSE
t_{7}^{\prime}	0	16300.3	0	22485.14
t_{8}^{\prime}	0.00000381	16403.58	0.00000974	16518.98
t_{9}^{\prime}	0.00000006	21754.44	-0.26502	22339.4
t_{10}^{\prime}	-0.34747	15793.29	9.819971	16384.03

Table-4
Bias and MSE for Population A and B for Ahmed et al. (2006)

Estimators	Population A		Population B	
	Bias	MSE	Bias	MSE
t_{7}	0	9.759633	0	16358.62
t_{8}	-.0000595	12.73984	-0.09258	16531.89
t_{9}	-.0000068	35.83645	-0.09527097	22319.77
t_{10}	-.0000663	9.759633	0.095271	16358.62

The sampling efficiency of suggested estimators under design I and $I I$ over Ahmed et al. is defined as:

$$
\begin{equation*}
E_{i}=\frac{O p t\left[M\left(t_{i}\right)_{j}\right]}{O p t\left[M\left(t_{i}\right)\right]} ; \quad i=7,8,9,10 ; \quad j=I, I I \tag{*}
\end{equation*}
$$

The efficiency for population A and B respectively given in table-5.
Table-5
Efficiency for Population A and B over Ahmed et al. (2006) ${ }^{6}$

Estimators	Population A		Population B	
	Design I	Design II	Design I	Design II
E_{7}	1.118298	3.967027	0.996435	1.374513
E_{8}	0.817709	0.966518	0.992239	0.999219
E_{9}	0.985928	1.026349	0.974671	1.000879
E_{10}	0.948329	1.156977	0.965441	1.001553

Remark-1: Under the setup when the population mean is known of auxiliary variable is known Ahmed et al. (2006) proposed some imputation methods and derived their properties. From which authors are discussing with four methods of them for comparison purpose ${ }^{6}$. Let $y_{j i}$ denotes the $i^{\text {th }}$ available observation for the $j^{\text {th }}$ imputation and $k_{i}, i=1,2$ and $\theta_{i}, i=1,2,3$ is a suitably chosen constant, such that the variance the resultant estimator is minimum. Imputation methods are :
$y_{7 i}= \begin{cases}y_{i} & \text { if } \quad i \in R \\ \bar{y}_{r}+\frac{n k_{1}}{(n-r)}(\bar{X}-\bar{x})+k_{2}\left(x_{i}-\bar{x}_{r}\right) & \text { if } \quad i \in R^{C}\end{cases}$
Under this method, the point estimator of \bar{Y} is $\quad t_{7}=\bar{y}_{r}+k_{1}(\bar{X}-\bar{x})+k_{2}\left(\bar{x}-\bar{x}_{r}\right)$
Lemma 1: The bias, variance and minimum variance at $k_{1}=k_{2}=\frac{S_{X Y}}{S_{X}^{2}}$ of t_{7} is given by
$B\left[t_{7}\right]=0$
$V\left(t_{7}\right)=\left(\frac{1}{r}-\frac{1}{N}\right) S_{Y}^{2}-2 S_{X Y}\left[k_{1}\left(\frac{1}{n}-\frac{1}{N}\right)+k_{2}\left(\frac{1}{r}-\frac{1}{n}\right)\right]+S_{X}^{2}\left[k_{1}^{2}\left(\frac{1}{n}-\frac{1}{N}\right)+k_{2}^{2}\left(\frac{1}{r}-\frac{1}{n}\right)\right]$
$V\left(t_{7}\right)_{\min }=\left(\frac{1}{r}-\frac{1}{N}\right) S_{Y}^{2}\left(1-\rho^{2}\right)$
$y_{8 i}=\left\{\begin{array}{l}y_{i} \\ {\left[\frac{\overline{y_{r}}\left(x_{i}+\frac{r}{n-r} \bar{x}_{r}\right)}{\theta_{1} \bar{x}_{r}+\left(1-\theta_{1}\right) \bar{x}}-\frac{r}{n-r} \overline{y_{r}}\right]}\end{array}\right.$

Under this method, the point estimator of \bar{Y} is

$$
\begin{equation*}
t_{8}=\frac{\bar{y}_{r} \bar{x}}{\theta_{1} \bar{x}_{r}+\left(1-\theta_{1}\right) \bar{x}} \tag{6.7}
\end{equation*}
$$

Lemma 2: The bias, mean squared error and minimum mean squared error at $\theta_{1}=\rho \frac{C_{Y}}{C_{X}}$ of t_{8} is given by
$B\left(t_{8}\right) \approx\left(\frac{1}{r}-\frac{1}{n}\right) \bar{Y}\left(\theta_{1}^{2} C_{X}^{2}-\theta_{1} \rho C_{Y} C_{X}\right)$
$M\left(t_{8}\right) \approx \bar{Y}^{2}\left[\left(\frac{1}{r}-\frac{1}{N}\right) C_{Y}^{2}+\theta_{1}^{2}\left(\frac{1}{r}-\frac{1}{n}\right) C_{X}^{2}-2 \theta_{1}\left(\frac{1}{r}-\frac{1}{n}\right) \rho C_{Y} C_{X}\right]$
$M\left(t_{8}\right)_{\min } \approx\left(\frac{1}{r}-\frac{1}{N}\right) S_{Y}^{2}-\left(\frac{1}{r}-\frac{1}{n}\right) \frac{S_{X Y}^{2}}{S_{X}^{2}}$
$y_{9 i}= \begin{cases}y_{i} & \text { if } \quad i \in R \\ \frac{1}{(n-r)}\left[\frac{n \overline{y_{r}} \bar{X}}{\theta_{2} \bar{x}+\left(1-\theta_{2}\right) \bar{X}}-r \overline{y_{r}}\right] & \text { if } \quad i \in R^{C}\end{cases}$
Under this method, the point estimator of \bar{Y} is $\quad t_{9}=\frac{\bar{y}_{r} \bar{X}}{\theta_{2} \bar{x}+\left(1-\theta_{2}\right) \bar{X}}$
Lemma 3: The bias, mean squared error and minimum mean squared error at $\theta_{2}=\rho \frac{C_{Y}}{C_{X}}$ of t_{9} is given by
$B\left(t_{9}\right) \approx\left(\frac{1}{n}-\frac{1}{N}\right) \bar{Y}\left(\theta_{2}^{2} C_{X}^{2}-\theta_{2} \rho C_{Y} C_{X}\right)$
$M\left(t_{9}\right) \approx \bar{Y}^{2}\left[\left(\frac{1}{r}-\frac{1}{N}\right) C_{Y}^{2}+\theta_{2}^{2}\left(\frac{1}{n}-\frac{1}{N}\right) C_{X}^{2}-2 \theta_{2}\left(\frac{1}{n}-\frac{1}{N}\right) \rho C_{Y} C_{X}\right]$
$M\left(t_{9}\right)_{\min } \approx\left(\frac{1}{r}-\frac{1}{N}\right) S_{Y}^{2}-\left(\frac{1}{n}-\frac{1}{N}\right) \frac{S_{X Y}^{2}}{S_{X}^{2}}$
$y_{10 i}=\left\{\begin{array}{lr}y_{i} & \text { if } \quad i \in R \\ \frac{1}{(n-r)}\left[\frac{n \overline{y_{r}} \bar{X}}{\theta_{3} \bar{x}_{r}+\left(1-\theta_{3}\right) \bar{X}}-r \overline{y_{r}}\right] \quad \text { if } \quad i \in R^{C}\end{array}\right.$
Under this, the point estimator of population mean \bar{Y} is $\quad t_{10}=\frac{\bar{y}_{r} \bar{X}}{\theta_{3} \bar{x}_{r}+\left(1-\theta_{3}\right) \bar{X}}$

Lemma 4: The bias, variance and minimum variance at $\theta_{3}=\rho \frac{C_{Y}}{C_{X}}$ of t_{10} is given by
$B\left(t_{10}\right) \approx\left(\frac{1}{r}-\frac{1}{N}\right) \bar{Y}\left(\theta_{3}^{2} C_{X}^{2}-\theta_{3} \rho C_{Y} C_{X}\right)$
$M\left(t_{10}\right) \approx \bar{Y}^{2}\left(\frac{1}{r}-\frac{1}{N}\right)\left[C_{Y}^{2}+\theta_{3}^{2} C_{X}^{2}-2 \theta_{3} \rho C_{Y} C_{X}\right]$
$M\left(t_{10}\right)_{\min }=\left(\frac{1}{r}-\frac{1}{N}\right) S_{Y}^{2}\left(1-\rho^{2}\right)$

Discussion

We considered, in the present research paper the study of some imputation methods in presence of missing observations under two phase sampling design while the number of responds is constant. But in practice it is not possible and the number of missing observations may be varying sample to sample. In such case the authors also extended suggested methods in case when number of respondent is varying. ${ }^{\mathbf{8 , 9 , 1 0}}$

Conclusion

The proposed estimators are useful when some observations are missing in the sample and population mean of auxiliary information is unknown. Table-2 and 3, clearly indicates that the class of suggested estimatorsare more efficient in design I than design II. So, we can conclude that design I is better than design II. Table-4 shows bias and m.s.e for population A and B for Ahmed et al. (2006). It is also observed from table-5 that the suggested strategies are very close with Ahmed et al. ${ }^{6}$.

References

1. Shukla D., Thakur N.S., Pathak S. and Rajput D.S., Estimation of mean with imputation of missing data using factor- type estimator in two-phase sampling, Statistics in Transition, 10(3), 397-414 (2009)
2. Thakur N.S., Yadav K. and Pathak S., Estimation of mean in presence of missing data under two-phase sampling scheme, Journal of Reliability and Statistical Studies, 4(2), 93-104 (2011)
3. Thakur N.S., Yadav K. and Pathak S., Some imputation methods in double sampling scheme for estimation of population mean, International Journal of Modern Engineering Research, 2(1), 200-207 (2012)
4. Rao J.N.K. and Sitter R.R., Variance estimation under two-phase sampling with application to imputation for missing data, Biometrica, 82, 453-460 (1995)
5. Shukla D. and Thakur N.S., Estimation of mean with imputation of missing data using factor-type estimator, Statistics in Transition, 9(1), 33-48 (2008)
6. Ahmed M.S., Al-Titi O., Al-Rawi Z. and Abu-Dayyeh W., Estimation of a population mean using different imputation methods, Statistics in Transition, 7(6), 1247-1264 (2006)
7. Shukla D., Thakur N.S., Pathak S. and Rajput D.S., Estimation of mean with imputation of missing data using factor- type estimator in two-phase sampling, Statistics in Transition, 10(3), 397-414 (2009)
8. Thakur N.S., Yadav K. and Pathak S., Imputation using regression estimators for estimating population mean in two-phase sampling, Journal of Reliability and Statistical Studies, 5(2), 21-31 (2012)
9. Thakur N.S., Yadav K. and Pathak S., Mean estimation with imputation in two-phase sampling, International Journal of Modern Engineering Research, 2(5), 3561-3571 (2012)
10. Thakur N.S., Yadav K. and Pathak S., On mean estimation with imputation in two-phase sampling design, Research Journal of Mathematical and Statistical Sciences, 1(3), 1-9 (2013)
