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Abstract  

This paper is a review of the classification models used for discrete variables. Nine classification procedures for binary 

variables are discussed and some of them evaluated at each of 118 configurations of the sampling experiments. The results 

obtained ranked the procedures as follows: Optimal, first order Bahadur, LDF, Second Order, Full, Distance, Nrule. 

 

Keywords: Classification models, orthogonal polynomials, likelihood ratio, discrete variables, misclassification, multinomial 

rule. 
 

Introduction 

The problem of classification arises when an investigator makes a number of measurements on an individual and wishes to classify 

the individual into one of several categories or population groups based on the measurements made on the individual. So the 

problem is that of assigning item(s) into one of k, 2≥k known populations assuming the item(s) actually belong to one of the 

populations. Our interest is in deriving a rule that can be used to optimally assign an item to one of the populations. The optimality 

criterion is to minimize the risk associated with the rule. We shall be concerned with 2=k  population classification problems. 

 

In some problems, fairly complete information is available about the distribution of the measurement vector 
1rxX  in the two 

groups. In this case, we may use this information and treat the problem as if the distributions are known. In most cases, 

information about the distribution of 
1rxX comes from a relatively small sample from the populations, and slightly different 

procedures are used. 

 

When all the parameters of the populations are known, the error of misclassification called the optimum error rate is evaluated 

directly from the given probability man function. If the parameters are unknown, the probabilities of misclassification, based on 

estimates of unknown parameters are obtained by simulation.  

 

The Problem 

Let 21 ππ and  be two populations available with infinite number of individual objects. Let there be r  characteristics of 

interest with corresponding measurement variables ,....,,, 321 rXXXX where .1≥r  Let the measurement vector of an 

individual in 1π be ( )′= rXXXX 1...12111
 and in ( )′= rXXXX 2...22212

. Supposing we find an object “o” with 

measurement vector 
0X ( )′= orXXX ,, 0201

 outside 
21 ππ and and which must belong to either 

21 ππ or . The problem 

is how to assign 0 to 
21 ππ or  such that the risk or expected cost or probability of error is a minimum. The measurement vector 

1×rX  can be discrete, or continuous or a mixture of discrete and continuous variables. We are interested in 
1×rX  whose 

arguments are discrete and to be more precise Bernoulli. The case of continuous measurement vector X has been studied 

extensively and the case of mixed variables (discrete and continuous) is yet to be studied in detail. 

 

In this inferential setting, the researcher can commit one of the following errors. An object from 1π  may be misclassified into 2π . 

Likewise, an object from 2π may be misclassified into 1π  If misclassification occurs, a loss would be suffered. Let C(i / j) be the 
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cost of misclassifying an object 
ij o ππ int . For the two population setting, we have that ( )1/2C  means cost of 

misclassifying and object into 2π  given that it is from 1π . 

 

( )2/1C  is the cost of misclassifying an object into 1π
 

given that it is from 2π . The relative magnitude of the loss 

( ) ( )jiCijL /, =  depends on the case in question; for example failure to detect an early cancer in a patient is costlier than 

stating that a patient has cancer and discovering otherwise. 

 

Classification Procedures 

Full Multinomial Rule: The full multinomial rule is based on estimating the probability mass function in population 
iπ  denoted 

by )(xf i
 with the minimum variance unbiased estimators 

( ) 2,1,
)(

== i
n

xn
xf

i

i
i

   

 

where ( )xni
 is the number of individuals in a sample of size 

in  from the population having response pattern X. The classification 

rule is;  
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Pires and Bronco (2004) noted as pointed out by Dillon and Goldstein (1978) that one of the undesirable properties of the Full 

Multinomial Rule is the way it treats zero frequencies. If ,0)(0)( 21 ≠= xnandxn a new observation with vector X will be 

allocated to 2π , irrespective of the sample sizes n1 and n2.  

 

The Dillon-Goldstein Rule: Dillon and Goldstein (1978) proposed the following rule as a result of the problem arising from zero 

frequency. The rule called the D-rule is based on Matusita’s distribution distance using the notation;  

iji nxn =)(  if x belong to state j. 

The rule is classify item into 1π
 
if 2

1

21

12

2
1

21
2

1

21

2
1

21
2

1

12

]
)1(

)1(
[

)()]1([

)()]1([

+

+
<

++

++

∑

∑

≠

≠

nn

nn

nnnn

nnnn

jk

kkjj

jk

kkjj

 

and to 2π if  2
1

21

12

2
1

21
2

1

21

2
1

21
2

1

12

]
)1(

)1(
[

)()]1([

)()]1([

+

+
>

++

++

∑

∑

≠

≠

nn

nn

nnnn

nnnn

jk

kkjj

jk

kkjj

 

randomly classify if 2
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Note that if n1=n2, the D-rule reduces to the Full Multinomial Rule.  

For n1 < n2 and n1j= 0 and n2j> 0 the rule becomes  
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However, suppose n2 > n1 and n2j=0 but nij > 0 we shall classify item with response pattern X into 
1π if  
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The Likelihood Ratio Criterion Rule (L-Rule): Considering a generalized ratio test for the hypothesis  

)(~,...,)(~,...,,: 222111110 21
xfXXandxfXXXH nn   

against )(~,...,,)(~,...,: 222111111 21
xfXXXandxfXXH nn

  

 

As was proposed by Anderson (1982), Pires and Bronco found that the likelihood ratio criterion also handles the problem of zero 

frequency. For the multinomial model, they proposed a test statistics that is a function of X and is given by 
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This rule fails to take account of several factors that may be important in practice. These factors are the deferential prior-

probabilities of observing individuals from the two populations and differential cost incurred by misclassification and a-prior 

probabilities and where if n1(x) = 0 and n2(x) = 0, the classification rule becomes 

 

Classify item with response pattern into andxLof 1)(1 >π into 2π if 1)( <xL . For ,21 nn =  this rule falls back to the 

Full Multinomial Rule. 

 

Procedure Based on the Linear Discriminant Function: The linear discriminant function for discrete variables is given by 

[ ] ( ) ( ) ( )∑ ∑∑ ∑ +−−−=
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where 
kjS are the elements of the inverse of the pooled sample covariance matrix, jij PandP 2

��

 
are the estimates of the sample 

means in 21 ππ and respectively. The classification rule obtained using this estimation is; 

Classify an item with response pattern X into 1π  if  ( ) ( ) ( ) 0
2

1
1222 >+−−− ∑∑∑∑
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 and to 2π  

otherwise.  
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First Order Bahadur Procedure: The first order Bahadur procedure is based on the Bahadur model  
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is the probabilities that response pattern X is observed in the i

th
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where Sj in the set of all pattern X with Xj = 1. 

 

The first order Bahadur is obtained by omitting all correlation terms ),...2,1()...()( rjkljk iii ��� . The classification rule is 

obtained using the likelihood ratio
)(

)(
xf

xf

i

i . 

 

Second Order Bahadur Procedure 

The second order Bahadur procedure is obtained when )( jkPandP iij terms are retained and all other correlation terms omitted. 

The classification is obtained by taking the likelihood ratio  
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where )(xnij is number of response pattern X from the ith population with Xj=1 

 

Nearest Negbour Procedure 

Hills was concerned with the problem of estimating likelihood ratios for Bernoulli variables. As there are 
k2  possible outcomes, 

the distribution may be considered multinomial, although in some cases it is possible to represent the distribution more 

economically. He proposed the used of nearest neighbour procedures to help overcome the problem of small (or zero) cell 

frequencies. For the Bernoulli case, a cell may be represented by the corresponding pattern of zeros and ones for example with k = 

3 variable, the possible patterns are 

000 001 010 011 

100 101 110 111 
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The near neighbour of order 1 is one that differs from the pattern in only one variable. The near neighbours of 010 are011, 000, 

and 110 

 

If the cell count for the jth cell is nij, then the nearest neighbour procedure assigns the observation to 1π  if 
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where A is the set of neighbour of state j. Hills comments that the estimate of the likelihood ratio has less sampling variability than 

the simple method using cell frequencies.  

 

The Optimal Classification Rule 

Let 21 ππ and  be two multivariate Bernoulli populations. 

Let ( )jiC /  be the cost of misclassifying an item with measurement X from jπ  into 
iπ
 
and let 

iq  be the prior prob. of 
cπ  

where 12,1 21 =+= qqwithi  and prob. mass function ( )xf i
 in 

iπ  where 2,1=i . Supposing we assign an item with 

measurement X  to 
iπ  if is in some region 

rRR ⊂  and to 
2π  if X is in some region 

r
RR ⊂1

 where 

02121 =∩∪= RRandRRR r
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The optimal classification rule is one that partitions 
r

R  such that ECM  is a minimum 
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ECM is minimized if the second term is minimized. ECM is minimized, it 1R  is chosen such that 
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Therefore the optimal classification rule with respect to minimization of the expected cost of misclassification is given by: classify 

object with measurement X into 1π  if 
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otherwise, classify into 2π  
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Without loss of generality, we can assume that ( ) ( ).1/22/1 CC =  Then minimization of ECM becomes minimization of the 

probability of misclassification P(MC). 

 

The optimal rule reduces to classify an item with measurement X into 1π  if  1
)/(

)/(

2

1 ≥
π

π

Xf

Xf

 

otherwise classify into 2π  

 

Since X is multivariate Bernoulli with rjiqP ijij ,....2,12,101 ==>−=  the optimal rule is classify an object with 
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Evaluating the Probability of Misclassification for the Optimal Classification Rule: For the optimal classification rule, we 

obtained the probabilities of misclassification for two cases. 

 

Case 1 Known Parameters 

i. General case where ( )
iriii PPPP ...21= , ii. Special case where ( )

iiii PPPP ...= With assumption that 21 PP <
, 

iii. Special 

case 1b with additional assumption that 1021 <<= θθPP  

 

Case 2 

i. General case ( )
iriii PPPP ...21=

, 
ii. We estimate 21 PandP by taking samples of size from 21 ππ and  respectively, iii. 

Special case where ( )iiii PPPP ...=  with the assumption that 
ii PP 21 <  we also estimate 21 PandP

, 
iv. Special case 2b with 

102121 <<<= θθ PPPP . We take training samples of size 22 πfromn  and estimate 2P  for fixed value of 21, PP θθ = . 
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For cases 2b and 2c the formula remains the same except that the parameters are estimated by their MLE estimates. 

 

Application with Life Data: The data used in this example was collected at the University of Ilorin Teaching Hospital. The data 

is made of the following categories of heart disease patients. i. Heart failure, ii. Hypertensive heart failure, iii. Hypertensive heart 

failure with stroke in evolution, iv. Congestive heart failure, v. Cardiovascular accident 
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There are two populations, i. Those who survived the attack, ii. Those who died 

 

Three variables were used Systolic blood pressure. i. Diastolic blood pressure, ii. Heart rate  

1π  has 131 patients, 2π  has 83 patients 

 

The systolic blood pressure is normal if it is less than 140mmHg ie 90-140. The diastolic blood pressure is normal if it is less than 

90mmHg ie 60-90. The heart rate is normal if it is less than 100 beats per minute ie (60-100) with the above information the 

dichotomized the measurements. 

 

Variable 1: Systolic Blood =1 if it is less than 140mmHg Pressure = 0 otherwise 

 

Variable 2:  diastolic = 1 if it is less than 90mmHg  = 0 otherwise    

 

Variable 3: Heart rate = 1 if it is less than 100 beats per minute  = 0 otherwise 

 

Let ( )32,1 XXXX =  denote the total response to the measurements and this leads to the following 
r2  response patterns. 

000, 100, 010, 110, 001, 101, 011, 111 

 

We selected the first 50 patients from each group and computed a classification rule. The frequency distribution is seen below. 

STATE Survivable Group Non Survivable Group 

x1 x2 x3 Frequency Frequency 

0
 

0 0 4 3 

1 0 0 1 1 

0 1 0 1 3 

1 1 0 3 12 

0 0 1 22 15 

1 0 1 2 1 

0 1 1 2 3 

1 1 1 15 12 

 

The population parameters are not known so they are estimated by the MLE ∑
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=
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Using these estimates we obtained the classification rule. Classify the item with response pattern X into 1π  if 

1864082.0026799.1728238.00402816.0 321 >+−− xxx and to 2π  otherwise. The response patterns were classified as follows. 

 

Response pattern Classification 

000 
2π  

100 
2π  

010 
2π  

110 
2π  

001 
1π  

101 
1π  

011 
1π  

111 
2π  
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Supposing we want to use the Full Multinomial rule for classification, then, the response patterns are classified as follows 

STATE Survivable Group Non Survivable Group 

x1 x2 x3 Frequency Frequency Allocation 

0
 

0 0 4 3 
1π  

1 0 0 1 1 
1π  

0 1 0 1 3 
2π  

1 1 0 3 12 
2π  

0 0 1 22 15 
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1 0 1 2 1 
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0 1 1 2 3 
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Procedure Based on Orthogonal Polynomials 

This section focuses on two approaches that utilize orthogonal functions to affect classification in both approaches; the 

multivariate binary density at the point X is expressed as a linear combination of orthogonal polynomials. The approaches are the 

Martin-Bradley Model and the Kronmal-OH-Tarter Model. Due to the fact that both utilize orthogonal functions to affect 

classification, we are going to present only the Kronmal-OH-Tarter Model. Suppose X=(X1,X2,…,Xr) is a multinomial binary 

vector with an associated sample space consisting of 2
r
 points. Let these points be numbered by a binary index p and consider the 

orthogonal functions 
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Based on a random sample of size n, let n(x) be the frequency of the state defined by X. Then, the maximum likelihood estimate of 

f(x) can be written as; )(2)( xdxf j
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Kronmal and Tarter have shown using mean summed squared error ∑ −
x

xfxfE
2

))()((
�

 

As a criterion of fit that the increase in error due to inclusion of the rth term, namely, dr, in the representation of f(x) is given by 
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and is estimated by 
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It follows therefore that inclusion of )(xfindr

�
leads to a decrease in error if the above equation is negative, that is if  
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Assuming equal prior probabilities and denoting by f1 and f2, the underlying multinomial densities respectively associated with 

,21 ππ and it follows that the optimal classification rule using the representation discussed above is to clarify x into )( 21 ππ if  

∑ ∑ Ψ<>Ψ
p p

pppp dxdx .2.1 )()()(

 

and randomly assign otherwise where the parameter sets { pid . } are associated with 

21 ππ and  respectively.  

 

If all parameters are estimated, the sample-based rule is simply the rule given above with the parameter set dip replaced by their 

estimates .2,1,. =id pi

�

 
 

Sampling Experiments and Results 

We have compared some of these procedures. Included in the list are the optimal rule, full multinomial, first, second and LDF 

procedures. The simulation experiments are based on population characterized by three, four and five variables. In general, a 

simulation experiment is characterized by the values assigned to the input parameters P1jand P2j. In addition to mean structures 

characterized by marginal probabilities P1j and P2j, we consider structures determined by the differences 

rjppd jj ...,,1,0)( 12 =≥−=  

To make the study reasonable in size, we take 4.0≤d . 

On the whole 21 population pairs given rise to 118 configurations are formed specifying values for the means Pij. Seven population 

pairs are based on three variables; eight are based on 4 variables and six on five variables. The five classification procedures are 

evaluated at each of the 118 configurations of n, r and d. The 118 configurations of n, r, and d are all possible combination of 

n=40, 60, 100, 140, 200, 300, 400, 600, 700, 800, 900, 1000, r=3, 4, 5 and d=0.1, 0.2, 03 and 0.4. 

A training data set of size n is generated via IMSL where n1= n/2 observations are sampled from 1π which has multivariate 

Bernoulli distribution with input parameter P1 and n2 = n/2 observations from 2π which is multivariate Bernoulli with input 

parameter P2, j=1, 2, …, r. These samples are used to consider the rule for each procedure and estimate the probability of 

misclassification for each procedure is obtained by the plug-in rule or the confusion matrix in the sense of the full multivariate. 
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The likelihood ratios are used to define classification rules. The plug-in estimates of error rates are determined for each of the 

classification rules. 

 

Step 1 and 2 are repeated 1000 times and the mean plug-in error and variances for the 1000 trials are recorded. The method of 

estimation used here is called the re-substitution method. The simulation experiments have been implemented using the IMSL. 

The number of iteration used for each of the configurations of n, r and d is 1000. The entire simulation required approximately 

1008hrs of CPU time. 

 

The result of just one configuration is displayed here P1 = (.3, .3, .3)
’
 P2 = (.5, .5, .5)

 

 

Sample Size Optimal Full First Second LDF 

50 0.341097 0.325212 0.341117 0.328162 0.340302 

70 0.347421 0.334872 0.347272 0.337122 0.346458 

100 0.349955 0.341089 0.34995 0.34958 0.34958 

150 0.353234 0.346947 0.352976 0.352877 0.352877 

400 0.357489 0.35587 0.357321 0.357302 0.357302 

 

P(MC)= 0.358 

Sample Size Optimal Full First Second LDF 

50 0.016903 0.03278 0.01688 0.02983 0.01769 

70 0.010588 0.02312 0.01072 0.02087 0.01154 

100 0.008045 0.01691 0.00805 0.01516 0.00842 

150 0.00476 0.01105 0.00502 0.00988 0.00512 

400 0.00057 0.00293 0.00067 0.0024 0.00069 

 

Classification  Rule Performance 

Optimal 1 

First 2 

LDF 3 

Second 4 

Full 5 

 

Conclusion 

We observed several marginal trends. We observed the good performance of the optimal classification rule and the first order and 

LDF procedures for small ratios of ln(n/r). Even when ( ) 3ln ≤
r

n these three procedures yielded good approximations to the 

exact probability of misclassification P(MC) whereas the full multinomial and the second order Bahadur procedures falter. The 

performance of the LDF is close to that of the first order for decreasing ratios of ( )
r

nln  and is not notably worse at all the four d 

values for ( ) 60.4ln <
r

n . The performance of the optimal, first and LDF procedures are little affected by the magnitude of d 

within the range of the design. The first and LDF recorded large variances for small values of n. The accuracy of the optimal 

classification rule improved as the size of n is increased. In terms of minimum variance, the optimal classification rule performed 

better than all the procedures. From the analysis, the procedures can be ranked as follows; Optimal, First Order Bahadur, LDF, 

Second Order Bahadur, Full Multinomial.  
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Osuji compared seven classification procedures namely the optimal rule, first and second order Bahadur procedures, LDF, Full 

Multinomial, distance and nearest neighbour procedures. He concluded that the classification rules that can be considered to be 

good are the optimal rule, Full Multinomial, Distance and Second Order Bahadur procedures. The following table from Osuji 

illustrates the result; 

 

Frequencies   

Distance Classification Rule 1    2    3    4 

0.1  OPT  OPT   OPT  FULL/DISTANCE 

0.2  OPT  FULL  OPT 

0.3  OPT  FIRST 

0.4  OPT 
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