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Abstract

If Ais a con s —& — EP matrix, then the reverse order laws for the con-s-k-EP weighted generalized inverse of A ( with respect
to the given matrices M,N) is a matrix which satisfies AAYA = A, AYA At = At and that MAAT and that AATN are symmetric
under certain conditions on M,N. It is shown that the weighted generalized inverse exists if and only if AN ATMA = A, in which
case the inverse is NTATMT . When M.N are identity matrices, this reduces to the well known result that the weighted
generalized inverse of a con-s-k-EP matrix when it exists, must be AT .

Keywords: con-s-k-EP matrix, generalized inverse, weighted generalized inverse, reverse order laws for the con-s-k-EP.

Introduction

Let ¢,,«xn be the space of nxn complex matrices of order n. let C,, be the space of all complex n tuples. For Aecy, .

Let 4, AT, A%, A5 , AS, AT, R(A), N(A) and p(A) denote the conjugate, transpose, conjugate transpose, secondary transpose ,
conjugate secondary transpose, Moore-Penrose inverse range space, null space and rank of A respectively. A solution X of the
equation AXA = A is called generalized inverse of A and is denoted by A~ . If A € ¢, x,, then the unique solution of the equations
A XA =A , XAX = X [AX]* = AX , [XA]* = XA is called the Moore-Penrose inverse of A and is denoted by AT. A matrix A is
called con-s-k-EP, if p (A) =1 and N(A) = N(ATVK) (or) R(A)=R(KVAT). Throughout this paper let “£" be the fixed product of

disjoint transposition in S, = { 1,2,....n} and k be the associated permutation matrix.
Let us define the function £ (x) = (xk(l) s Xi(2)2 0 Xy () ) )

A matrix A = (a;;) € Cpxp 18 sS-k-symmetric if @;;= an_g(j)+1,n-k(@+1 1071, j=1,2,....n. A matrix A € Cpx,, is said to be Con-s-k-
EP if it satisfies the condition 4, = 0 <=> A5 £ (x) = 0 or equivalently N (A) =N(ATVK). In addition to that A is con-s-k-EP
<=> KVA is con-EP or AVK is con-EP and A is con-s-k-EP<=> AT is con-s-k-EP, moreover A is said to be con-s-k-EP, if A is
con-s-k-EP and of rank r. For further properties of con-s-k-EP matrices one may refer “Con-s-k-EP matrices” by Krishnamoorthy,
S., Gunasekaran, K. and Muthugobal, B.K.N., 2,

Definition 1.1: Let Ae C, andlet M ,Ne C
iAxA=ail XAX = X il (MAX) =MAX iv(NXA) = NXA

, be two positive definite matrices. The unique matrix X which satisfies

n nxn

is called the weighted Moore-Penrose inverse of A and is denoted by AL’ y obviously for M=N=I, the weighted Moore-Penrose

inverse of A is the Moore-Penrose inverse of A.

ForAe C axn » the sets of least-squares weighted generalized inverse of A({1,3M}-inverse of A), minimum-norm weighted

generalized inverse of A({1,4N}-inverse of A) {1,2,3M}- inverse of A and {1,2,4N} - inverses of A, respectively are given by
T
A{1,3m} ={X : AXA = A, (MAX) =MAX} Af1,4N} = {X cAxA = A, (Nxa) = NXA}

T

A{1,2.3M}={X : AXA=A, XAX =X, (MAX)" =MAX} A{1,2.4N}={X:AXA=A, XAX = X, (NXA)" = NXA}

. R 3,4,5
For more results concerning generalized inverse reported by many researchers.
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The reverse order law for the Moore-Penrose inverse seems first to have been studied by Greville® in 1960. Since then there have
been quite a number of papers on this subject see’®).

In the paper “On reverse order laws for the weighted generalized inverse” studied by Zheng, B’, for the first time the authors
presented necessary and sufficient conditions for several types of reverse order laws for the weighted generalized inverse to hold.
In this paper we after new necessary and sufficient conditions for the reverse order laws for the weighted generalized inverses of
Con-s-k-EP matrix. The significance of our results lies in the fact that the conditions given in this paper, especially for the
{1,2,3M} and {1,2,4N} - reverse order laws, are purely algebraic while the conditions given in “On reverse order laws for the
weighted generalized inverse,”. Zheng, B’ are mostly rank conditions. We present necessary and sufficient conditions for the
following inclusions.

B{1,3N}A{1,3M }c (AB){1,3M } B{lL4K}A{1,4N}c (AB){l1,4K}
B{1,2,3N}A{1,2,3M } c (AB){1,2,3M} B{l,2,4K}A{1,2,4N}c (AB){l,2,4K}

These inclusions are also valid for Con-s-k-EP matrices. M, N and K are three positive definite matrices of order nxn and L
respectively. Also, we consider the reverse order law for the weighted {1,3,4}-inverse. We give necessary and sufficient

conditions for B 113N .4L}A{1.3M .4N}c (AB){1.3M .4L} 4 (AB){1,3N,4L}c B{1l,3N,4L}A{l,3M ,4N }

in the case when M,N,K are positive definite matrices of order nxn.

Reverse order laws for the weighted {1,3}, {1,4}, {1,2,3} and {1,2,4} -inverse of Con-s-k-EP matrices: Let A,Be C,_ be
Con-s-k-EP matrices and let M € C, Ne C

x> and Le Can be three positive definite matrices. In this section, we give

necessary and sufficient conditions for the following inclusion to hold:

B{1,3N} A{1,3M }  (AB){1,3M }

.(2.D)
B{1,4L} A{1,4N} c (AB){1,4N} 2.2
B{1,2,3N} A{1,2,3M} = (AB){1,2,3M } 2.3)
B{1,2,4L} A{1,2,4N} c (AB){1,2,4N} 2.4)

The results from this section generalize those of paper by Xiong, Z '"and Cvetkovic-Ilic ' to the case of weighted generalized
inverses. First, we will state the characterization of the sets A{1,3M} and A{1,4N} given in the reference paper “On reverse order

laws for the weighted generalized inverse” °.

Lemma2.1':1let AcC_. and M,Ne C

nxn

are positive definite matrices. For G € C we have,

nxn nxn

i. Ge A{lL3AM} & ATMAG=A"M , i. Ge A{lLAN} & GAN"'A" =N"'A"

Obviously, we can conclude that A{L3M} ={AL’1" +(I,Z —ALJ"A) Y:Ye Cw} and A{L4N} :{A;m’N +Z([m —AA;WN) Ze Cw}

Now, we will give a similar characterization of the sets A{1,2,3M} and A{1,2,4N}.

Theorem 2.1: Let A€ C be Con-s-k-EP matrix, M ,N € C be positive definite matrices. For Ge C we have,

nxn nxn

i. Ge A{1,23M} & ATMAG = A" MKVA"KVG =A'M  and GKVA'VKA,, , =G
ii. Ge A{1,2,4N} & GAN"'A" =GKVA'VKN'A" =N"'A" and A] KVA'VKG=G

Proof: i If Ge A{1,2,3M} . then A"MKVA'VKG = A" MKVA'VKG| =A"M

GKVATVKA],, =GM~ (MKVAVKG )M~ (MKVATVKA;,, ) = GM "' (MKVATVKG)' M~ (MKVA'VKA], , )
If we suppose that A" MAG = A"MKVA'VKG = A"M and GKVA'VKA,, , =G GKVA'VKA,, , =G

=G
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. T p T
we have that, AGA =M ' (MKVA'VKA, , )| AGA=M""(MKVA'VKA],, ) A=A
1 4t \ g T -1 Toat VL
Also, GAG=GM' (A, | A'MKVA'VKG=GM™ (MKVA'VKA,, | =G

T
And (MKVA'VKG) =G"KVAVKM =G" A" MKVA'VKG = MAG
The statement (ii) can be proved in a similar way. Throughout the paper, we will use the following lemma.

% Let, AeC MeC and NeC

nxn’ mxm nxn’

Al =N (M%AN‘%)T M

Lemma 2.2 where M and N are positive definite. Then,

In the next theorem we present new necessary and sufficient conditions (3 and 4) for (2.1) to hold.

Theorem 2.2: Let, Ac C ., Be C  be Con-s-k-EP matrix. If M,Ne C, are positive definite matrices, then the

following conditions are equivalent:

(1°) B{1,3N}A{1,3M } c (AB){1,3M}
(2°) BB}, N"'A"MKVA"VKKVB'VK =(N"'A"MKVA" B'VK )
(3°) By, Ay v € (AB){1.3M}

(4°) B, A}, v € (AB){1,2,3M}

Proof: From Corollary 2.2 % we have that (1°) is equivalent with (2°). Now, Let us prove that (3% is equivalent to (1% and that
(40) is equivalent to (10).

Let AZM%KVATVKNi% and B= N%KVBTVK . For Xe C"X” and Ye C”X" put X = N%XM_% and Y = YN_%

. It is easy to see that the following equivalences hold:

XeA{l3M} & X =A{1,3} Ye B{L3N} e ¥ =B{1,3) YX€ AB{1.3N} & ¥X =(AB){1,3}

B{1,3N} A{1,3M} c (AB){1,3M} < B{1,3} A{1,3}c AB{1,3}_
B{1.3} A{1,3} c(AB){1,3}

Obviously,

So (10) is equivalent to ... (2.5

T T
Now, by Theorem 3.1 "', we get that (2.5) is equivalent to BB'A"AB=A"AB , which is by Lemma 2.2 equivalent to
KVB'VKB,,, N"'A"MKVA"B"VK = N"'A"MKVA" B'"VK
~x -~
Bl A" e(AB B'A"e | AB|y1,2,3
Since ~ NoATM.N (AB) {1,3M} is equivalent to ( ){ } , the proof follows by Theorem 3.1 *
A similar result in the case of weighted {1,4}-inverses follows from Theorem 2.2 by reversal of products.

A BeC

mn Con-s-k-EP matrix. If N,LeC

Theorem 2.3: Let - are positive definite matrices, then the following conditions

are equivalent:
i. KVA"B'VKL'B"NA; \KVA'VK = KVA"B'VKK™'B'N ,ii. B{1,4L} A{l,4N}c (AB){1,4K}
iii. By A v €(AB){L4L},iv. B, (A , € (AB){1,2,4K}

International Science Congress Association



Research Journal of Mathematical and Statistical Sciences ISSN 2320-6047
Vol. 1(8), 1-7, September (2013) Res. J. Mathematical & Statistical Sci.

- r _ - . _ ~

Proof: Let A=KVA VKN % and B = N%KVB VKK % For Xe C’”‘” andYe C’”‘”, let X = N%X and
~ ) _1

Y=K AY N A . Now, the proof is similar to the one of Theorem 2.2 and follows from Theorem 3.2 i

Now, we will consider the reverse order law for the weighted {1,2,3}-inverses and weighted {1,2,4}-inverses. Bemark that
necessary and sufficient rank conditions for the reverse order law of {1,2,3} and {1,2,4}-inverses are given in paper The reverse
order law for {1,2,3}- and {1,2,4}- inverses of a two- matrix product” by Xiong, Z 10

A,BeC M,NeC

Theorem 2.4: Let mn If "X are positive definite matrices, then the following conditions are equivalent:

(1) B{1,2,3N}A{1,2,3M } < (AB){1,2,3M }

(2*) KVB'VKB,,, N" A"MKVAB'VK = N"A"MKVA'B'VK _ (KVA'B'VKB,, ) KVABVKB,, =KVB'VKB,,

and ( or

;
KVA'B'VK (AB), , =KVA'VKA, , )

~ 1, _1 ~ 1
Proof: Let A= M2 KVA"VKN 2 amd B= NAKVBTVK. For X€Cum YeCo 4 2€C. put

X=N2xmM> V=wN" Z=zM ABZAB=AB ; i
, and . Then we have that = if an only if

KVA"B'VKZKVA'B'VK =KVA"B'VK 14 that ZABZ=7 i and only if ZKVA'B'VK =Z a0,
~ ~ ~\T ~ o~ o~

(ABZ) =ABZ _ (MKVA"B'VKZ) =MKVA' B'VKZ
if and only if .

Ze(AB){1,2.3} & Ze (AB){1.2.3M}

Hence,

XeaA{l23}

g ¥ € B{L2,3N}

Similarly, we get that X e A{l2.3M} if and only if Y e A{l, 2,3}.

Using Lemma 2.2 we can easily prove the following,

if and only

(ABB') ABB'=BB' < (KVA'B'VKB], ) KVA'B'VKB}, =KVB'B},, VK
AB)(AB) = AA" = (KVA'B'VK)(KVA'B'VK =(KVATA" VK
(48)(AB) ( ) Do = )

+
M.Ig M.N

BB'A"AB=A"AB < KVB'B,, VKN"'A"MKVA"B'VK = N"' A" MKVA" B'VK
Now, the proof follows from Corollary 3.1 '' . The case of weighted {1,2,4}- inverses is treated completely analogously, and the
corresponding result follows by taking adjoints or by reversal of products.

A,BeC N,LeC

Theorem 2.5: Let mn be Con-s-k-EP matrices. If mn - are positive definite matrices then the following

conditions are equivalent:

i. B{1,2,4K}A{1,2,4N} c (AB){1,2,4N},

(Al KVA'B'VK)(A KVA'B' VK)N )

i. KVA'B'VKL'B'NA] ,KVA'VK = KVA'B'VKL'B'N 44
T pT T T pT i T
Al KVAVK Or(KVA B'VK),  (KVA'B'VK)=B\ ,KVB VK

Reverse order law for weighted {1,3,4} inverses:
In this section we consider the reverse order law for the weighted {1,3,4}-inverses. We give necessary and sufficient condition for

B{,3N,4L} A{1,3M ,4N} < (AB){1,3M ,4L} ind (AB){1,3M ,4L} c B{1,3N,4L} A{1,3M ,4N}
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In the case when M, N, L are positive definite matrices of appropriate sizes. Also we give a very short proof that
(AB){1,3M,4L} < B{1,3N,4L} A{1,3M ,4N} is actually equivalent to (AB){1,3M,4L} = B{1,3N,4L} A{1,3M ,4N}
we will begin with two auxiliary results.

Lemma 3.1

A,Be : M,Ne » - , .
Let ~ 7 C"X" be Con-s-k-EP matrices. If N C”X” are positive definite matrices, then the following statements are
equivalent:

i. Be A{1,3M ,4N}
ii. ATMKVA"B'VK = A" and KVB"A'VKN'A" = A
KVB'VK =A!  +(I-A] ,KVA"VK)Y(I—-KVA"VKA!
iii. There exists Ye C”X" such that M.N ( M.N ) ( M'N)
~ 1 _1 ~ 1 _1
Proof:  Let A=M AK VA'VKN . and B=N AK VB'VKM : . It is easy to see that
Be A{l.3M 4N} < Be A{l.3.4} ATAB=A" o ATMAB=A" ,,q BAA" = A" & KVB A'VKN"'A” = A"
> E:AH({—A%)Y(I—AA*)

.. YeC
Also, there exist wn  guch that

B=A),  +(I-Al ,A)Y (I-AA] )

if and only if there exists Ye C”X" such that

A{L3M AN} = A}, , +(I- A}, ,A)Y (I -AA}, ,):YeC,,

Now, the proof follows from Lemma 1.2 2. Hence,

A,Be C M,N,KeC

Lemma 3.2: Let 1 be Con-s-k-EP. If mn - are positive definite matrices then

i. B, ,B(AB), , =(AB),, ii (AB), 6 AA, =(AB),

f o

Proof: By easy computation, we can show that By.B (AB)M!L B (AB){L 2}
MKVA"B'VKB], , KVB'VK (KVA"B'VK) =MKVA"B'VK (KVA"B"VK )
Since, ’ M.L M.L
LB;, KVB'VK (KVA'B'VK) (KVA'B'VK) =B'(B},) (AB)' L(KVA'B'VK) (KVA"B'VK)
is symmetric and ’ M.L ’ M.L
+ AT PN &

=5 (B;..) (4B) ((KvA"B'VK), | L=B"A"((KVA'B'VK), | L=L(KVA'B'VK), (KVA'B'VK)
B} ,KVB'VK (KVAB'VK) =(KVATB'VK)

we have M.L The identity (ii) can be proved similarly.

A,Be C

»n be Con-s-k-EP matrices. Let

M,N,LeC

Theorem 3.1: Let mn be positive definite matrices. The following

conditions are equivalent:

i. B{L3N,4L} A{1.3M AN} < (AB){1.3M 4L}, ii. (AB), =B} A},

Proof: Lot A=M2KVATVKN™? 4 B=N"KVB'VKL" 1o, X-Y€Cpu gy X =N"KVATVKM " 4
¥=1YN
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X e A{1,3M 4N} & X € A{1,3,4} Ye B{l,3N,4L} & Y e B{1,3,4}

It is easy to see that

Xe(AB){13M 4L} > ¥X e (AB){13.4}  B{1.3N.4L} A{1.3M 4N} < (AB){1.3M 4L}
& B{1,3,4}A{1,3,4} c (AB){1.3.4}

(AB)., =B}, A, <(AB) =B'A’
We can easily prove the next equivalence. M.L ’ ’

Now, the proof follows by Theorem 2.1 .

Remark that several conditions equivalent to (b) can be found in reference paper “Inverse order rule for weighted generalized
. » 13
inverse” .

A,Be C

»n be Con-s-k-EP matrices. Let

M,N,LeC

Theorem 3.2: Let mn be positive definite matrices. The following

conditions are equivalent:

i. (AB){1,3M 4L} c B{1,3N.4L} A{1,3M ,4N} ii. (AB){1,3M ,4L} = B{1,3N,4L} A{1,3M ,4N}

Proof: (1) = (2)

(KVATBTVK);L+(I—(KVATBTVK) L(KVATBTVK))Z(I—(KVATBTVK)(KVATBTVK) )

¥ ¥
M, M.L

Z,X,YeC

" For every nn guch that

=| B}, +(1-B}, KVB'VK)Y(I-KVB'VKB), )| | A}, \+(I -4}, KVA'VK)Y (1-KVA'VKA,, ) |

B} ,KVB'VK AA]
v KVB'V from the left and by =~ -V from the right, by Lemma 3.2 we have

(KVA'B'VK)  + (BL,LKVBTVK ~(KVA'B'VK) (KVATBTVK))

M,

Multiplying the last equality by

¥ T pT T pT i

Z(AAM,N—(KVA B'VK)(KVA'B VK)M,L) =B, A},
(KVA"B'VK) =B}, Al
For Z=0 we get M.L ' " which implies

B{1,3N,4L} A{1,3M ,4N} < (AB){1,3M ,4L}

(ii)= (i)

" This is obvious.

A,Be C

nn pe Con-s-k-EP matrices and let

M,N,LeC

Theorem 3.3: Let mn be positive definite matrices. The following

conditions are equivalent:

i. (AB){1,3M ,4K} c B{1,3N, 4L} A{1,3M ,4N}  ii. (AB){1,3M,4L} = B{1,3N,4L} A{1,3M ,4N}

iii. (AB),, B}, Al and (B=A], ,AB or A=ABB}, )

Proof: Let A=M 2 KVA'VKN ™" 4 B=N"KVB'VKL" o X€Cry 1q YECps 1o X =NXM 7 14
Y= L%Y N K . We have that

X e A{1,3M ,4N} & X € A{1,3,4}
Ye B{,3N.4L} & Y e B{1,3,4}

YX € AB{1,3N 4L} & ¥X € (AB){1.3,4}
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Now, the proof follows from Theorem 2.3. It is interesting to remark that using Theorem 2.4 '°, we can conclude that

(AB){1,3M ,4L} < B{1,3N,4L} A{1,3M ,4N}

Can be true only in the case when m <n.

Conclusion

The concept of conjugate secondary range k-hermitian matrices is a generalization of conjugate secondary k-hermitian matrices. In
this thesis we characterize the conjugate secondary range k-hermitian matrices and deal with the results analogous to the results of
conjugate range hermitian matrices.

Conjugate secondary range k-hermitian matrices have wide variety of application. One of the applications is to find the isomers
from the chemical structure. Further these matrices can also be applied to result from the given genetic code matrix to a
permutation genetic code matrix. From which one can get different amino acid sequences.
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