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Abstract  

The linear or nonlinear equations are important in many cases of stochastic process viz, renewal equations, age dependent 

branching process etc. There is a standard theory of linear integral equations. Here the technique is generalised and 

modified under different set ups. Generalisations are considered in three different cases:i. Integration is Riemann-Stieltjes 

integration with respect to an integrator of bounded variation, ii. integration w.r.t. step function integrator and iii. 

integration on any probability space or measure space. 

 

Keywords: Non-Riemann integral equation, Fredholm integral equatin of scond kind, Rimann-Stieltjes integratin, step 

function, bounded variation function, measure space. 
 

Introduction 

Integral equations come in many stochastic processes
1
. As linear integral equtions have been studied extensively by others, we 

have not disscussed those things, but we have generalised some of the results where the set up of the equations are different
2
. In 

fact the author tried to solve many nonlinear integral equations analytically and then those techniques are attempted to generalise. 

Such works are important in stochastic processes for solving many integral equations
3
. Also nonlinear integral equations are 

discussed in literature4. Motivated fom this, other set ups for example, type of integration and integrator have been attempted. 

Three different cases: i. Integration is Riemann-Stieltjes integration with respect to an integrator of bounded variation, ii.  

integration w.r.t. step function integrator and iii. integration on any probability space or measure space are described and 

investigated. For general type of functional equation one may look at Evans
5
. One may use some tools for applications from 

literature
6
. One important reference in stochastic processes is Ross

7
. Another from application point of view is Ross

8
. 

 

The solutions and conditions in the above mentioned three cases are obtained. Let us consider the following equation as in (1)  

( ) = ( ) ( , ) ( ) ( )
b

a
x F x K x dgϕ λ ξ ϕ ξ ξ+ ∫

                    
(1.1)

 
where (.)g  is any function of bounded variation

 
 

Definition 1.1 (Apostol) A function )(⋅g  is called a bounded variation on ],[ ba  if for any partition 

bxxxaP n =<<<=: 10 �  we have  

.|)()(|sup
9

1

1=

boundedisxgxg ii

n

iP
−−∑  

( ) = ( ) ( , ) ( ) ( ) (2)
b

a
x F x K x dG as inϕ λ ξ ϕ ξ ξ+ ∫

                   
(1.2)  

 

where (.)G  is a step function and discontinuity at ),(,,, 21 baccc s ∈�   

( ) = ( ) ( , ) ( ) ( ) (3)
X

x F x K x d as inϕ λ ξ ϕ ξ µ ξ+ ∫
                    

(1.3)  

 

where µ  is a finite measure on the sample space ),( ΓX . 

where R→× XX:K ,  R→X:F  

These are considered in sections 2, 3 and 4. Then the solutions are obtained in each case. Some examples are also worked out. 

 



Research Journal of Mathematical and Statistical Sciences ___________________________________________ ISSN 2320–6047 

Vol. 1(7), 6-12, August (2013)         Res. J. Mathematical and Statistical Sci. 

International Science Congress Association   7 

Solution of Integral Equation in Riemann-Stieltjes Function  
Let us consider (1.1) in Riemann-Stieltzes sense and we replace the integral by approximation sum as  

1

1

=1

( ) = ( ) ( , ) ( )[ ( ) ( )]
n

F x x K x g gγ γ γ γ
γ

ϕ λ ξ ϕ ξ ξ ξ
−

+− −∑
                  

(2.1)  

where 
nξξξ <<< 21 �  are partitioning points of ],[ ba  

 

Hence we get  

)]()()[(),()(=)( 11

1

1=

11 γγγγ
γ

ξξξφξξλξφξ ggKF
n

−− +

−

∑
, 

[ ]{ } )]()()[(),()()()(),(1= 11

1

2=

11211 γγγγ
γ

ξξξφξξλξφξξξξλ ggKggK
n

−−−− +

−

∑
 

[ ]{ } [ ])()(),()()()(),(1 232111211 ξξξξλξφξξξξλ ggKggK −−−−⇒
, 

[ ] [ ] )()()(),()()(),( 11113431 ξξξξξλξξξξλ FggKggK nnn =−−−−− −−�

 
Similar expressions at 

132 ,,, −nξξξ �  

 

Proceeding like this for others we have n similar equations .                      (2.2) 

In order to have a unique solution the coefficient matrix must be non-singular i.e.,  
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where ),(=&)()(= jiijjiij Kkggg ξξξξ − , must be non-singular. 

 

Now �
3!

)(

2!

)(
1=))((det

2

1,1,

1,1,
2

1

λλ
λλ

γ
γγγγ

γ

−
+

−
+−

++

++

+ ∑∑
vvvvuuuv

vvuvuuuu

n
gkgk

gkgk
gKD  

Now taking limit as ∞→n  and finer partition we have )(=))((detlim λλ DDn
n ∞→

 

In order to have solution of (2.2) we must have 0)( ≠λD . Then the solution becomes, 

 

Theorem 2.1. The solution in the previous case is given by  )()(),,()(=)( ξξλξλφ dgFxRxFx
b

a∫+  

 

where 
)(

),,(
=),,(

λ
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λξ

D

xD
xR
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∞
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where 
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Proof: We take  

onsoandxKxKxKxR �+++ ),(),(),(=);,( 3

2

21 ξλξλξλξ  

[ ])();,(),(),(= 111 ξλξξξλξ dgRxKxK ∫+  
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Now let us write )();,(=);,( λλξλξ DxRxD  

 

Then putting this into previous expression we get )(
)(

);,(
),(),(=

)(

;,(
1

1
1 ξ

λ

λξξ
ξλξ

λ

λξ
dg

D

D
xKxK

D

xD
∫+  

1 1 1( , ; ) = ( ) ( , ) ( , ) ( , ; ) ( )D x D K x K x D dgξ λ λ ξ λ ξ ξ ξ λ ξ⇒ + ∫                    
(2.3)  

 

As we know 
i

i
i

i

P
i

D
!

1)(1=)(
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λ
λ −+∑

∞

)()(=& 1
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
∫∫  

 

Putting 0=λ  as it is valid range because 01=(0) ≠D  ),(=;0),( ξξ xKxD  

 

By previous argument the solution will be of the form 
0

=1

( , ; ) = ( , ; ) ( 1) ( , )
!

i
i

i

i

D x B x B x
i

λ
ξ λ ξ λ ξ

∞

+ −∑
                           

(2.4)  

 

Putting (2.4) in (2.3) we get )(),(
!

1)();,(),(),(
!

1)(1 11
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1

0 ξ
λ

λξ xB
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i
i

i
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∞
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Now successively collecting coefficient of 
iλ  we have )(),(),(),(=),( 1111 ξξξξξξ dgBxKixBPxK iii −∫−  

)(),(),(),(=),( 110111 ξξξξξξ dgBxKPxKxB
b

a∫−⇒
, 

)(),(),()(),(),(= 1101111 ξξξξξξξξ dgBxKdgKxK
b

a

b

a ∫∫ −  

∫
b

a

dg
KK

xKxK
)(

),(),(

),(),(
= 1

111

1 ξ
ξξξξ

ξξ

 

similarly for other ),( ξxBi
. 

 

Solution of integral equation with step function integrator  

Now we consider equation (1.2) i.e., the integral equation when the integrator function )(⋅g  is discontinuous at kyyy ,,, 21 � . 

Then we know that the Riemann-Stieltzes integral becomes (Apostol, 1973)  

( , ) ( ) ( ) = ( , ) ( )
b

i i i
a
K x y y dg y K k y yϕ ϕ α∑∫

                    
(3.1)  

 

where  

kiforyatfunctionygofjump ii ,1,2,=)(= �α  

xyyxKxFx iii

k

i

∀+⇒ ∑ ,)(),()(=)(
1=

αφλφ  

Now putting kyyy ,,, 21 �  in both sides in the above we have k equations like (3.1).  

Above system of equations can be rewritten as  

( ) )(),()(),()(),(1=)( 1222111111 kkk yyyKyyyKyyyKyF φαλφαλφαλ −−−− �  

( ) )(),()(),(1)(),(=)( 2111222222 kkk yyyKyyyKyyyKyF φαλφαλφαλ −−−+− �  

( )1 1 1 1 1 1( ) = ( , ) ( ) ( , ) ( ) 1 ( , ) ( )k k k k k k k k k kF y K y y y K y y y K y y yλ α ϕ λ α ϕ λ α ϕ− − −− − + −�
              

(3.2)  
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Now in order to solve the above system of equations (3.2) we must have  
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must be non-singular. 

 

Now �+
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+− ∑∑
jjjiij
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(3.3)  

 

Let us take special case when )(⋅g  has only one discontinuity points at cx =  then αλλ ),(1=)( ccKD −  

where α  is amount of jump of g  at cx = .  

α
λ

),(

1

ccK
≠⇒  

in order to have solution and the solution is given by  

ξξλξφ dFxRxFx
b

a
)(),,()(=)( ∫+  

where  
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by theorem 2.1. 

 

In this case we must have 1 2 3= , and = = = nα α α α α�
),(

1

ccKα
λ ≠⇒  

In the following we shall workout an example 

 

Example 1. Let us take 1=0,=,=),( baxexK ξξ  

Then 
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1
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1 ξ
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d
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xKxKb

a∫⇒  

and other higher order determinants must be zero. 

 

Now we see using theorem 3.1 that  

),(=);,(0 ξλξ xKxB  

),(=);,( ξλξ xKxD⇒  

)(

),(
=);,(

λ

ξ
λξ

D

xK
xR⇒  

ξξλξ xexKxD =),(=);,(⇒  
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αλ
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),(1
=);,(
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For 1=λ   

α
ξ

ξ

),(1
=),(
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−
and the solution is given by  

1

0
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(3.4)  
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Compact form of solution: Now let us take )()(),()(=)( ξξφξλφ dgxKxFx
b

a∫+  

where kyyy ,,, 21 �  are the points of discontinuity of )(⋅g .  

 

So above becomes iii
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These are successive iterated kernels. 

Now consider the series ),(=);,( 1
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Solution of integral equation in measure theoretic set up  

Now let us consider the last case: Here we partition the sample space into nAAA ,,, 21 �  s.t.  
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where ii A∈ξ . 

The above expression approximation can be done upto any desired level because we know that for bounded functions and finite 

measure integrals are approximated in this way. 

 

It is known that this can be done uniformly over x  and the set on which function is defined, is a compact set and the σ -field is 

compatiable with the topological structure
10

. Then we have the following system of equation 



















=





































−−−

−−−

−−−

)(

)(

)(

)(

)(

)(

)(1)()(

)()(1)(

)()()(1

2

1

2

1

2211

2222121

1212111

nnnnnnn

nn

nn

F

F

F

AkAkAk

AkAkAk

AkAkAk

ξ

ξ

ξ

ξφ

ξφ

ξφ

µλµλµλ

µλµλµλ

µλµλµλ

��

�

����

�

�

 

  

 

where ),(= jiij Kk ξξ  

Then we must have the non-singular coefficient matrix  
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Then taking finer and finer partitions, the limit value coincides to its integral. So we have  
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Here second expression is w.r.t product measure. 

So we have 

 

Theorem 4.1. If X  is a compact topological space and µ  is defined on its σ -field then the solution for the above integral 

equation is given by  
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),( ⋅⋅K  is a measurable, bounded function on the product σ -field. )(⋅F  is a given measurable function. 
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Proof: Holds as before, by partitioning the space into )(21 ,,, xkBBB �  such that for given x , the integral can be approximated. 

Similarly for other x  also. Moreover, by compactness ∃  finite number of sets kAAA ,,, 21 �  such that x∀  the integral can be 

approximated by these sets and rest of the proof is as before. 

 

Conclusion  

We have extended the idea of power series technique to linear equations but with different setup. For non-linear case there is scope 

for further study. 
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