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Abstract

The linear or nonlinear equations are important in many cases of stochastic process viz, renewal equations, age dependent
branching process etc. There is a standard theory of linear integral equations. Here the technique is generalised and
modified under different set ups. Generalisations are considered in three different cases:i. Integration is Riemann-Stieltjes
integration with respect to an integrator of bounded variation, ii. integration w.r.t. step function integrator and iii.
integration on any probability space or measure space.

Keywords: Non-Riemann integral equation, Fredholm integral equatin of scond kind, Rimann-Stieltjes integratin, step
function, bounded variation function, measure space.

Introduction

Integral equations come in many stochastic processes'. As linear integral equtions have been studied extensively by others, we
have not disscussed those things, but we have generalised some of the results where the set up of the equations are different”. In
fact the author tried to solve many nonlinear integral equations analytically and then those techniques are attempted to generalise.
Such works are important in stochastic processes for solving many integral equations’. Also nonlinear integral equations are
discussed in literature®. Motivated fom this, other set ups for example, type of integration and integrator have been attempted.
Three different cases: i. Integration is Riemann-Stieltjes integration with respect to an integrator of bounded variation, ii.
integration w.r.t. step function integrator and iii. integration on any probability space or measure space are described and
investigated. For general type of functional equation one may look at Evans’. One may use some tools for applications from
literature®. One important reference in stochastic processes is Ross’. Another from application point of view is Ross".

The solutions and conditions in the above mentioned three cases are obtained. Let us consider the following equation as in (1)

P = F(x)+ A K Hp(&)dg (&) (L1)

where g(.) is any function of bounded variation

Definition 1.1 (Apostol) A function g(-) 1is called a bounded variation on [a,b] if for any partition

P:a=x,<x <--<x,=b wehave

supz | g(x,)—g(x, )| is bounded’.

Pzl

P(x) = F(x) + 4] K(x, P(E)dG(E) as in (2) (1.2)

where G(.) is a step function and discontinuity at ¢,,¢,,*,¢, € (a,b)

o(x)=F(x)+ lIXK(x, EHP(E)du(&) as in (3) (1.3)
where {{ is a finite measure on the sample space (X,I").

WhereKZXXX—)R’ F:X—R

These are considered in sections 2, 3 and 4. Then the solutions are obtained in each case. Some examples are also worked out.
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Solution of Integral Equation in Riemann-Stieltjes Function
Let us consider (1.1) in Riemann-Stieltzes sense and we replace the integral by approximation sum as

n-1

F(x) = p(x) = A3 K(x,E)P(E N 2(E,.) - (&) @.1)
y=1
where 51 < 52 <0< fn are partitioning points of [a,b]

Hence we get

F(E) =)= K(&.E)ENN8(E,.0~8(E)] ={1-aK (&, &)lg (&) - g(§1)]}¢(§1)—ﬂ"Z:fK(é,ny(é)[g(éﬂ)— g(& )1

= 1=K )&~ EIE) - AKE & o) - 2] ~AKE ENeE) 8@l —AKE &, e -8, D= F(E)

Similar expressions at é:z , é IEEER le

Proceeding like this for others we have n similar equations . 2.2)
In order to have a unique solution the coefficient matrix must be non-singular i.e.,

1=k, g, —Akpgs _ﬂ’klngnﬂ,n
D, (1) = - /U(:zlgzl 1- ﬂkzzzgn - /U(z,:gnﬂ,n
_Z'knngI _Z'k112g32 l_ﬂ’knngn+l,n

where g, = g((fi)—g(fj) & k; = K(fi,(:/.), must be non-singular.

kuu gu+l,u kuxrgv+l,v + (_/1)2
kuv gu+l,u kvv g v+1,v 3 '
Now taking limit as 72 —> ©° and finer partition we have |im det(D, (4)) = D(A)

n—o0

In order to have solution of (2.2) we must have D(A) # 0. Then the solution becomes,

_2\2
Now det(Dn(/i))=1—/12KWgW+( ;) >
/4 : /4

b
Theorem 2.1. The solution in the previous case is given by @(x) = F'(x)+ lLR(x, ENF(E)dg(E)

where (s, ¢, 2) = s ) & D EA=REH+ TS B & B,-<x,§>:f---f1(@ g } ?]dg(é)--dg(é)
Du):1—2(—1)"%]0"---]:4? N ?jdg(é)---dg(é)
K(x9§) K('x’é:l) K(x9§n)
where K(x 61 g/z]: K(é:l’é:) K(f{’gl) K(é:pfn)
g gl 6/1 : : s :
K(¢,.5) K¢,.6) - K(,.6.)
Proof: We take

R(x,& ) = KI(X,eg)+/1K2(x,§)+/121(3(x,f)+--- and so on
= K(x.&)+ A|[K (. E)RE. & dg(&)]
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Now let us write D(x,&;4) = R(x,&;4)D(A)

L . . D(x,&: 2 D(,.¢:4)
Th tt th t t o0t o ) SR b
en putting this into previous expression we ge DA K(x,f)+/1IK(X,§1) D) dg (&)
= D(x,& ) = D(A)K(x,6) +/1J.K(x,§l)D(§1,§; ﬂ)dg(fl) (2.3)

Asweknow D(1) =1+ Y (-1)' 2 P & R=Ib---jb1<[? g ?Jdg(ci)---dg(é)
i=1 l. a a l 2 e ;

Putting 4 =0 as it is valid range because D(0) =120 D(x,&;0) = K(x,&)

By previous argument the solution will be of the form D(x,&;4) = B,(x,&;4) + Z(—l)i i' B.(x,¢) 2.4
1.

i=1

Putting (2.4) in (2.3) we get (1+ i(—l)i l.—;RJK(x,fH le(x,é‘l)[Bo(fpé‘;l) + i(—l)i %Bf(fl,f)Jdg(é‘l)
i=1 2 i=1 L

0o ) ﬂi
= By(x,&; )+ D (-1 7B,.(x,e;)
i1 :
Now successively collecting coefficient of A we have K (x,&)P, = B,(x,¢) —i.[K(x, ENB,_(£,6)dg(¢)

= B (1.6 = K HR - [ K(.£)B,(E.E)dg(&) = KO K(E.E)dg(E)~ [ K(x.&)B,(&. Edg (&)

=j’-K(x,§) K(x,¢&)
K6 K(.¢)

a

dg(&)) similarly for other B,(x,&).

Solution of integral equation with step function integrator

Now we consider equation (1.2) i.e., the integral equation when the integrator function g(-) is discontinuous at VisYor s Vi -
Then we know that the Riemann-Stieltzes integral becomes (Apostol, 1973)

b
[ K e(ndg(») = YKk, y)0(3)e, 3.1)
where

o, = jump of g(y) functionat y, fori=12,---k
k
= P(x) = F(x)+ AD K(x,y)¢(y,)e, , Vx
i=1
Now putting y,, ¥,,***, Y, inboth sides in the above we have k equations like (3.1).
Above system of equations can be rewritten as

F(y) = (1=K (3, y)a )p(3) = AK (1, ,)00(y,) == AK (3, v ) H(3,)
F(y,) ==K (3,,9,)0(y,) + (1= AK (y,,y) )p(y) == AK (35, y )& H(¥,)
F(yk) = —/U((yk, yl)a1¢(y1)_"’ﬂK(yk’ yk71)ak71¢(yk71)+(1_1K(yk’ Yk )ak)¢(yk) (32)
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Now in order to solve the above system of equations (3.2) we must have

1-AK(y, vy, —AK(y,y,)a, - —AK(,,y,),
D(A) = _/,iK(yzz’)ﬁ)al 1—/1K(y:2,y2)0!2 _/?’K(y?’yk)ak
_ﬂK(yk’yl)al _ﬂ’K(yk’yZ)az 1_2’K(yk’yk)ak

must be non-singular.

K(y.y)e, K(yi’yj)a"
K(y;,y)a, K(y;,y),

Now det(D(A)) =1— ﬂZK(yl,y)(Z+ ’1) >

i.j

K(y,y) K.y;)

+---and so on (3.3)
K(y,,y) K(y;,y;)

—l—ﬂzn:K( Yo +ﬂ2aa
= L Yis Yi)&; 21 i%

i,j

Let us take special case when g(+) has only one discontinuity points at X = ¢ then D(1) =1-AK(c,c)x
where & is amount of jump of g at X=cC.

1
K(c,0)a

in order to have solution and the solution is given by

o(x) = F(0)+ [ R0 & DF (©)dé

=S A#

where
D A ) E o £
R(x,&,A) = (g(i) )and D(x,&4) = K(x, §)+Z( ) I J' ( P fnjdg(fl)...dg(fn)
by theorem 2.1.
In this case we must have &) = &, and o,=0,==Q, :>ﬂ¢;
aK (c,c)

In the following we shall workout an example

Example 1. Let us take K (x,&) = xe, a=0,b=1

ThenK(x ‘flJ:K(x’f) K(x, )| _ xé® xeii
& &) KGO KEL) & gel

and other higher order determinants must be zero.

| K(x,&)  K(x,8)

k.8 KE.E) T

} = )afle&f1 —xée&é‘ =0 =

Now we see using theorem 3.1 that

B,(x,&;A) = K(x,8)

= D(x,6;4) = K(x,$)

K(x,$)
D(A)

= D(x, &) = K(x, &) = xe®

= R(x, &) =
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xe§

3R(x,f;/1)=m

For A=1
xef

R(x,&) = —————— and the solution is given by
1-K(c,0)x

xe®
1-K(c,0)x
xe®

=F(x)+———F(c)a is a solution
1-K(c,c)x

P = F)+ | F(&)dg(€) (3.4)

Compact form of solution: Now let us take @(x) = F(x)+ lij(x, EHo(&)dg(E)

where y,,y,, ", Y, are the points of discontinuity of g(-).

So above becomes @(x) = F(x)+ /'iZK(x, y)o(y,)e,

i=1

Let us try with @(x) = @, (x) + 1@, (x) + L@, (x) +---

Then g (x) + Ay () + £, (X) +-- = F(0)+ A K (x5, )l (3) + 26, (5 + £, )+ ey

i=1

= @,(x)=F(x)

k k
¢(x) =D K(x,y)8,(y)e, = Y K(x, y)F(y)e,
i=1 i=1

k

k k k k k
B0 =D Koy A = K(x,y, ){ZK(MJ,- )F(y, )a,}og =31 Y K@ y)K (. y,)oe}F(y,.)a,. =YK, (xy)F(y)e,
i=1 i=l Jj=1

j=1li=1 J=1

0,(0)= YK (.30, () = YK, (x. 3 )F (3,

k k k
where K,(x,y,)= > K(x,y)K(3,,y )0 Ky(x,y,)=> K(x,y)K,(3.y)0 K,(xy)=YKxy)K, (3.0
i=1 i=1 i=1

These are successive iterated kernels.

Now consider the series R(x,&;4) = iﬂiKm (x,$)
i=0
o k o k
Then solution becomes as in the following @(x) = Zﬁf@ (x)=F(x) +ﬂZﬂ'¢i+l (x) =F(x) +/12ﬂf [ZKM (Y F(y; )a]J
i=0 i=0

=0\ j=l
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k oo k
= F(x)+ zZ(ZIKm(x, y j)]F( v, = F(x)+A) R(x,y;; VF (y)a;(3.5)

j=1\i=0 j=1

Solution of integral equation in measure theoretic set up
Now let us consider the last case: Here we partition the sample space into A, A,,+-+, A s.t.

P00~ A3 K (6 £)0E)HA) = F(A.D)

where fl €A.

The above expression approximation can be done upto any desired level because we know that for bounded functions and finite
measure integrals are approximated in this way.

It is known that this can be done uniformly over X and the set on which function is defined, is a compact set and the O -field is
compatiable with the topological structure'®. Then we have the following system of equation

l_ﬂkn:u(Al) _/?'klzlu(Az) _ﬂ’klnlu(An) ¢(§1) F(gl)
=My (A 1=k u(Ay) - = Ak, u(A,) | 9(S,) . F($)

— Ak u(A) = Ak p(Ay) e 1=k, u(A) ] 4(E) ] | F(S)

where k; = K(fi,fj)

Then we must have the non-singular coefficient matrix

2k, u(A) k ,U(A‘)‘
D,(A)=1-1 k, MU(A)+— rr r rs 4
) LI HAIEZ 2 A koA

Then taking finer and finer partitions, the limit value coincides to its integral. So we have

2 K, K,

D(Z)ZI—ZEK(&{,")-}-Z_E#[ (51 51) (51 52)
21 7LK(S,.6) K(6,.6,)

Here second expression is w.r.t product measure.

So we have

} + other terms

Theorem 4.1. If X is a compact topological space and  is defined on its O -field then the solution for the above integral
equation is given by

$(0) = F(0)+ 2| R(x.&DFE)du(&)

D(x.¢.2)
DA)

and Bl.(x,f):J'Q---J.QK[

where R(x,&,A) = and D(x,&, ) = B,(x,&) + i(—l)i /1._:31‘ (x,$)
i=1 L

x & o &
E & o &

DA =1-3 1) 7 [, LK(? N ?)dﬂ(fl)“'dﬂ(@)

K (-,7) is a measurable, bounded function on the product O -field. F'(-) is a given measurable function.

]du(x)dﬂ(éi)---du(é)
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Proof: Holds as before, by partitioning the space into B, B,,--, Bk(x) such that for given X, the integral can be approximated.

Similarly for other X also. Moreover, by compactness 3 finite number of sets A, A,,+--, A, such that VX the integral can be

approximated by these sets and rest of the proof is as before.

Conclusion

We have extended the idea of power series technique to linear equations but with different setup. For non-linear case there is scope
for further study.
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