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Abstract  

Statistical Curvature of Bradley Efron helps in comparing curved exponential family of distributions with corresponding 

exponential family of distribution. The analysis in curved family has been made easy by that concept. But suitable test 

procedures are unavailable for discrete curved exponent families.  In this paper a suitable test procedure for Curved Poisson 

distribution is obtained 
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Introduction 

Curved exponential family of distributions plays an important role in Statistics. But in case of inference on such distributions we 

have to face certain obstacles because curved exponential family does not have good statistical properties as the exponential 

family. Bradley Efron
1
 has compared curved exponential family with exponential family introducing the concept of Statistical 

Curvature or Efron’s Curvature. He has shown in his paper that families with small curvature enjoy good statistical properties of 

exponential family as exponential family has curvature zero. Moreover it can be shown that if one takes an example of a 

distribution from exponential family and deals it as a curved exponential family then the statistical curvature of such curved 

exponential family becomes exactly equal to zero. So, after finding the values of the involved parameter of a curved exponential 

distribution for which the statistical curvature attains small values, it can be concluded that for such values of the parameter, the 

test statistic of certain hypothesis is equivalent to that of the corresponding exponential family. 

 

It has been found that some inference procedures are available fragmentally for continuous distributions of curved exponential 

family. But in case of discrete distributions from curved exponential family we cannot find such procedures for testing purpose. 

 

Using statistical curvature this paper wants to find out a suitable test procedure for Curved Poisson distribution, in which the 

parameter of Poisson distribution involves another discrete distribution. In this paper Uniform distribution is taken as the involved 

discrete distribution.   

 

Some preliminary discussions regarding this topic 

Definition 2.1 (Curved Exponential Family of Distributions): Let X = (X1, X2,…, Xd) have a distribution Pθ, θ ∈ Θ ⊆ R
q
. 

Suppose Pθ has a density (pmf)  of the form ( ) ∑
=

Ψ−=
k

i

ii xhxTxf
1

)())()()(exp(| θθηθ , 

where k > q. Then the family {Pθ, θ ∈ Θ} is called curved exponential family
2
. 

 

Example 2.1: A set of independently and identically distributed random variables which follow N (θ, θ
2
), θ is the unknown 

parameter involved in the distribution
2
. This is an example of a curved exponential distribution of continuous type. 

 

Example 2.2: Suppose X and Y are two random variables such that 

tlyindependen
pmBY

pnBX
f

),(~

),(~
2

 

 

where p is the unknown parameter involved in both the distributions
2
. This is an example of a curved exponential distribution of 

discrete type. 
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Definition 2.2 (Statistical Curvature): The concept of mathematical curvature extends to the curved lines in Euclidian k-space, 

E
k
, say, £= {ηθ, θ∈Θ}, where Θ is the interval of real line. For each θ, ηθ is a vector in E

k
 whose component wise derivatives with 

respect to θ is denoted by 

( ) θθ ηθη ∂
∂≡

.

 
and ( ) θθ η

θ
η 2

2..

∂
∂≡

 
 

These derivatives are assumed to exist continuously in neighborhood of a value of θ where it is wished to define the curvature. Let 

us also suppose that a k×k symmetric non-negative definite matrix Σθ is defined continuously in θ.  

 

Let Mθ be a 2×2 matrix, with entries denoted by ν20(θ), ν11(θ), ν02(θ),defined by  


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and let 

( ) 2/13

20 )(/ θυγ θθ M≡                2.2 

 

Then γθ is “the curvature of £ at θ with respect to inner productΣθ”. γθ (given in 2.2), the statistical curvature of ₣ at θ, is the 

geometric curvature of £={ηθ : θ ∈ Θ } at θ with respect to the covariance inner product Σθ as defined in 2.1 and 2.2. 

 

Here ₣ will stand for the family of densities {fθ(x): θ ∈ Θ}, our curved exponential family. Statistical Curvature is also known as 

Efron’s Curvature.  

 

Example 2.3: The value of the statistical curvature of the distribution given in example 2.1 is 
2/1

1331

2







=
n

for all possible values 

of θ. That is for all possible values of θ the statistical curvature have very small values. So, here the test procedure for θ is 

equivalent to that of for exponential Normal distribution. 

 

Example 2.4: The statistical curvature of the distribution given in example 2.2 is given in the following figure: 

 

 
Figure -1 

Figure -1, it is seen that for p=0.6 to 0.85 the value of the curvature is small 

 

A suitable test procedure for p in the distribution given in example 2.2 has been tried to be found out by Sanchayita Sadhu and 

Babulal Seal
3
.  
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Definition 2. 3 (Curved Poisson Distribution): A distribution is defined as Curved Poisson distribution if it is of the following 

form. 

 

Suppose Zi = zi, i = 1,2,…,n. Xi are independent Poi(λzi) variables and Z1,Z2,…,Zn have some joint p.m.f p(z1,z2,…,zn). It is 

implicitly assumed that each zi > 0 with probability 1. Then the joint p.m.f of (X1,X2,…,Xn,Z1,Z2,…,Zn) is  

∏
=

+−

∈

∈

∑ ∑
= = =

n

i

n

n

n

i

x

i

xz

nn

NzIz

NxIx

zzzp
x

z

ezzzxxxf

i

n

i

n

i

ii

1

11

01

21log)(

2121

,...,

,...,

),...,,(
!

)|,...,,,,...,,( 1 1

λλ

λ           2.3 

N0 = set of non-negative integers, N1 = set of positive integers
2
. 

This paper wants to find out a suitable test procedure for this distribution. 

 

Statistical Curvature of Curved Poisson distribution 

Consider the Curved Poisson distribution as given in definition 2.3. Then its p.d.f. is given in equation 2.3. 

 

Let Z1, Z2, …, Zn are independently and identically distributed (i.i.d) as U(0,1) (discrete). Now comparing equation 2.3 with 

definition 1 i.e. comparing the p.d.f of Curved Poisson distribution with the form of  

Curved Exponential distribution, we get 
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Now covariance between T1 and T2 is to be found. 
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Therefore from 3.3, 3.5 and 3.10,  
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Using the concept of statistical curvature and 3.11, 3.12 the statistical curvature of Curved Poisson distribution can be found. In 

this paper statistical curvature of the Curved Poisson distribution for various values of n has been drawn through a programming in 

statistical software R.  

 

The statistical curvatures for various values of n are given in figure-2, figure-3 and figure-4. 

 

 
Figure -2 
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Figure-3 

 
Figure-4 

 

In this way the statistical curvature for this distribution can be found out for different values of n, where n is number of 

observations. From above pictures, it is seen that for n=1, for different values of parameter λ statistical curvature has different 

values; in case of other values of n, for different values of λ statistical curvatures have the same value. But in all cases the 

curvatures assign vary small values. 

 

Inference of the Curved Poisson distribution 

There are test procedures for Poisson distribution which does not contain another discrete distribution with its parameter. As test 

procedure for Poisson distribution which contains another discrete distribution with its parameter are not available, to reach to any 

decision about λ of the above mentioned distribution, a test procedure should be found out. 
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To overcome this problem this paper would like to find out a test procedure to draw an inference about the null hypothesis. 

 

From figure-2, figure-3 and figure-4, we see that the value of the curvature is small for all values of λ.  

 

Now, let us demonstrate how to get the test method for such distribution. For example, let us work for getting test for H0: λ0 = 2 

vs. H1: λ0 ≠ 2. 

 

The test procedure is as follows:  

Here Xi ~ Poisson (λZi), where Zi ~ U(0,1), Xi’s and Zi’s are independently and identically distributed. 

Let X1 takes values 1,2,3,…,k,… and Z1 ~ U(0,1,…,n). 

Then the probability that X1 takes a particular value k is given by 
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Considering Z1’s probability of taking a particular value, the joint probability becomes 
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Let X1 takes a particular value k and Z1 takes a particular value m.  

∴ 0 ≤ m ≤ n. 

 

Hence for an observation (x1, z1), the likelihood function is 
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Let k be the fixed value of X1 and let m be the fixed value of Z1. Then from (4.3),  

1)log()(log cmkmL ++−= λλλ                                                                                                          4.4 

 

where c1 is a constant. 

m

m
km

L

λλ
λ

+−=
∂

∂
∴

)(log                                                                                                                        4.5 

 

Equating 4.5 to 0, we get 
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So, H0 will be rejected if 4.8 is less than C, where C is a constant. 

Now from 4.8  
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So, if 
)1()( +−= ttetf then for a fixed k, f(t) ↑ if m < k/λ0 and f(t) ↓ if m ≥ k/λ0. Hence from 4.8 and 4.10 H0 will be rejected if 

4.10 < C. 

 

Now, ( ) Cte
kt <+− )1(

 

100

0

<<
k

m
ift

k
m λ

λ
                       4.11a 

⇔  

101

0

≥≥
k

m
ift

k
m λ

λ
                      4.11b 

Here t0 should be< 1 and t1 should be>1.                                                                                            4.12 

 

Therefore for a size α test, for various values of k, the values of t0 and t1 to be found out such that  
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Now to achieve this, one way is to consider the following 
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For calculation purpose inequalities of 4.13a and 4.13b are  

2

!)1(
)(

0
0

0

0

0

kn
me

t
k

m

km +
≤∑










=

− α
λ

λ
λ                                                                                                                         4.15a 

and 

2

!)1(
)(

1
0

0

0

kn
me

n

t
k

m

km +
≤∑









=

− α
λ

λ

λ                                                                                                                      4.15b 

 

Considering condition (4.12) and using equations (4.15a) and (4.15b) the values of t0 and t1 have been found out taking α=0.01.  

For this purpose, this paper uses an R program. The following tables will give the values of t0 and t1 from which one can reach to 

the decision. 

 

Tables to find the values of t0 corresponding to different values of k and n: 
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Table-1 

Table to find the values of t0 corresponding to different values of k and n=1 

When n=1 

Values of k Values of R.H.S. of 

(4.15a) 

Values of m 

(= kt0/λλλλ0) for which 

L.H.S. is just > R.H.S. 

Values of L.H.S. 

which is just > R.H.S. 

Values of t0 

(= mλλλλ0/k) 

0 0.01 0 1 0 

1 0.01 0.01 0.019 0.02 

2 0.02 0.05 0.02027 0.05 

3 0.06 0.14 0.07 0.0933 

4 0.24 0.26 0.269 0.13 

5 1.2 0.41 1.34 0.164 

6 7.2 0.58 7.7668 0.1933 

7 50.4 0.77 53.164 0.22 

8 403.2 0.98 428.929 0.245 

9 3628.8 1.2 3777.693 0.267 

10 36288 1.43 36602.72 0.286 

11 399168 1.68 411733.8 0.30545 

12 4790016 1.93 4799841 0.3217 

13 62270208 2.2 64074714 0.338 

14 871782912 2.48 887863695 0.353 

One can proceed in this way for more values of k until t0 is less than 1 (from 4.12) 

 

Table-2 

Table to find the values of t0 corresponding to different values of k and n=2 

When n=2 

Values of k Values of R.H.S. of 

(4.15a) 

Values of m 

(= kt0/λλλλ0) for which 

L.H.S. is just > R.H.S. 

Values of L.H.S. 

which is just > R.H.S. 

Values of t0 

(= mλλλλ0/k) 

0 0.015 0 1 0 

1 0.015 0.01 0.019 0.02 

2 0.03 0.06 0.033 0.06 

3 0.09 0.15 0.09 0.1 

4 0.36 0.28 0.375 0.14 

5 1.8 0.44 1.94 0.176 

6 10.8 0.62 11.52 0.207 

7 75.6 0.82 80.35 0.234 

8 604.8 1.02 613.3 0.255 

9 5443.2 1.26 5519.946 0.28 

10 54432 1.5 54522.99 0.3 

11 598752 1.76 621890.6 0.32 

12 7185024 2.02 7362665 0.337 

13 93405312 2.29 95218507 0.352 

14 1307674368 2.57 1339455685 0.367 

One can proceed in this way for more values of k until t0 is less than 1 (from 4.12) 
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Table-3 

Table to find the values of t0 corresponding to different values of k and n=3 

When n=3 

Values of k Values of R.H.S. of 

(4.15a) 

Values of m 

(= kt0/λλλλ0) for which 

L.H.S. is just > R.H.S. 

Values of L.H.S.  

which is just > R.H.S. 

Values of t0 

(= mλλλλ0/k) 

0 0.02 0 1 0 

1 0.02 0.01 0.0196 0.02 

2 0.04 0.07 0.05 0.07 

3 0.12 0.17 0.142 0.113 

4 0.48 0.3 0.51 0.15 

5 2.4 0.46 2.445 0.184 

6 14.4 0.65 15.19 0.217 

7 100.8 0.85 101.49 0.243 

8 806.4 1.08 858.75 0.27 

9 7257.6 1.31 7442.62 0.291 

10 72576 1.56 75285.12 0.312 

11 798336 1.82 833695.1 0.331 

12 9580032 2.08 9653827 0.347 

13 124540416 2.36 127667909 0.363 

14 1743565824 2.64 1762388776 0.377 

One can proceed in this way for more values of k until t0 is less than 1 (from 4.12), In a similar manner tables can be formed for 

other values of n., Tables to find the values of t1 corresponding to different values of k and n: 

 

Table-4 

Table to find the values of t1 corresponding to different values of k and n=1 

When n=1 

Values of k Values of R.H.S. of 

(4.15a) 

Values of m 

(= kt1/λλλλ0) for which 

L.H.S. is just > R.H.S. 

Values of L.H.S.  

which is just > R.H.S. 

Values of t1 

(= mλλλλ0/k) 

0 0.01 1 0.135 ∞ 

1 0.01 1 0.27 2 

2 0.02 1 0.541 1 

In this case we can not proceed farther because for other values of k the values of t1 will be less than 1. But t1 can not be <1 by 4.12. 

 

Table-5 

Table to find the values of t1 corresponding to different values of k and n=2 

When n=2 

Values of k Values of R.H.S. of 

(4.15a) 

Values of m  

(= kt1/λλλλ0) for which 

L.H.S. is just > R.H.S. 

Values of L.H.S.  

which is just > R.H.S.  

Values of t1 

(= mλλλλ0/k) 

0 0.015 2 0.018 ∞ 

1 0.015 2 0.073 4 

2 0.03 1.99 0.5890 1.99 

3 0.09 2 1.17 1.33 

4 0.36 2 4.688 1 

In this case we cannot proceed farther because for other values of k the values of t1 will be less than 1. But t1 cannot be <1 by 4.12. 
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Table-6 

Table to find the values of t1 corresponding to different values of k and n=3 

When n=3 

Values

 of k 

Values of R.H.S. of (4.15a)Values of m (= kt1/λλλλ0) for which 

L.H.S. is just > R.H.S. 

Values of L.H.S. which is just > R.H.S.Values of t1

(= mλλλλ0/k) 

0 0.02 2.99 0.09 ∞ 

1 0.02 2.99 0.0299 5.98 

2 0.04 2.99 0.1797 2.99 

3 0.12 3 0.535 2 

4 0.48 3 3.212 1.5 

5 2.4 3 19.27 1.2 

6 14.4 3 115.65 1 
 

In this case we cannot proceed farther because for other values of k the values of t1 will be less than 1. But t1 cannot be <1 by 4.12. 

[L.H.S. = Left Hand Side; R.H.S. = Right Hand Side], Hence from tables (Table-1 to Table-6) one can easily get the values of t0 

and t1 for different values of k and n. And hence decision regarding 4.13 can be taken. The following subsection contains the 

corresponding R program. 

 

R program used for finding values of t0 and t1 

n=2;alpha=0.01  # Taking n=2; the same program will run for n=1, n=3 and so on. 

k=seq(0,14,by=1) # For computation purpose k=0 to 14 has been taken. More values can be taken.  

product=0 

for(i in 1:26) 

{ 

  product[i]=(factorial(k[i]))*(n+1)*(alpha/2) 

  }                                                               

product                                                 # product symbolises the R.H.S of (4.15a) and (4.15b) for different values of k 

lamda.not=2 

mm=k/lamda.not                                  #Here mm= k/λ0  for different values of k. 

 

## PROGRAM FOR (4.15a) i.e. TO FIND THE VALUES OF t0 ## 

#### PROGRAM TO BE DONE TAKING k=0 #### 

m=0 

m[1]=0 

s1=(exp((-lamda.not)*m[1]))*(lamda.not*m[1])^k[1]   

 # [In this program s1 is the expression given under summation in the L.H.S. of (4.15a) for k=0] 

#### PROGRAM TO BE DONE MANY TIMES CHANGING THE VALUES OF "k" #### 

s=0 

s[1]=(exp((-lamda.not)*m[1]))*(lamda.not*m[1])^k[15] 

for(i in 2:300){ 

  m[2]=0.01 

  s[i]=(exp((-lamda.not)*m[i]))*(lamda.not*m[i])^k[15] 

  m[i+1]=m[i]+0.01 

  } 

product[15];mm[15] 

sum=0 

sum[1]=s[1] 

for(i in 2:300){ 

  sum[i]=sum[i-1]+s[i] 

} 

sum 

## PROGRAM FOR (4.15b) i.e. TO FIND THE VALUES OF t1 ## 

#### PROGRAM TO BE DONE TAKING k=0 #### 
 

m1=0           # Here m1 is equivalent to m (as used in (4.15b)) 

m1[1]=n 
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s2=(exp((-lamda.not)*m1[1]))*(lamda.not*m1[1])^k[1] # if necessary, this line has to be run many times for different values of m, 

by ‘for loop’    

# [In this program s2 is the expression given under summation in the L.H.S. of (4.15a) for k=0] 

 

#### PROGRAM TO BE DONE MANY TIMES CHANGING THE VALUES OF "k" #### 

ss=0 

ss[1]=(exp((-lamda.not)*m1[1]))*(lamda.not*m1[1])^k[5] 

for(i in 2:100) 

{ 

m1[2]=m1[1]-0.01 

ss[i]=(exp((-lamda.not)*m1[i]))*(lamda.not*m1[i])^k[5] 

m1[i+1]=m1[i]-0.01 

} 

product[5];mm[5] 

sum1=0 

sum1[1]=ss[1] 

for(i in 2:100) 

{ 

sum1[i]=sum1[i-1]+ss[i] 

} 

sum1 

 

Conclusion 

In this paper a test procedure for Curved Poisson distribution has been found out. Here Uniform distribution has been used as the 

distribution involved in Poisson distribution. One may use other discrete distributions in place of Uniform distribution also and 

plenty of scopes are there for doing further research. This paper hopes the test procedure will help to take decision about a data 

that follow Curved Poisson distribution. 
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