On Some New Integrals Relation of $\overline{\boldsymbol{H}}$-function

Dashrath Singh Marko, Pandey Sunil and Shukla Manoj Kumar

Department of Mathematics, Govt. Model Science College, Jabalpur, MP, INDIA

Available online at: www.isca.in

Received $26^{\text {th }}$ March 2013, revised $30^{\text {th }}$ March 2013, accepted $10^{\text {th }}$ April 2013

Abstract

In this paper we derive some new integrals whose integrand contains product of Horn's function and \bar{H}-function of one variable.

Keywords: \bar{H}-function, Horn's function

Introduction

The $\overline{\boldsymbol{H}}$-function was introduced by Inayat Hussain ${ }^{1}$ and studied by Bushman and Srivastava ${ }^{2}$.

$(\xi) x^{\xi} d \xi,(z \neq 0)$
Where $\bar{\varnothing}(\xi)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} \xi\right) \prod_{j=1}^{n}\left\{\Gamma\left(1-a_{j}+\alpha_{j} \xi\right)\right\}^{A_{j}}}{\prod_{j=m+1}^{q}\left\{\Gamma\left(1-b_{j}+\beta_{j} \xi\right)\right\}^{B_{j}} \prod_{j=n+1}^{p} \Gamma\left(a_{j}-\alpha_{j} \xi\right)}$
Here $a_{j}(\mathrm{j}=1, \ldots, \mathrm{P})$ and $b_{j}(\mathrm{j}=1, \ldots, \mathrm{Q})$ are complex parameter $\alpha_{j}=0,(\mathrm{j}=1, \ldots, \mathrm{P}), \beta_{j}=0(\mathrm{j}=1, \ldots, \mathrm{Q})$ (not all zero simultaneously) and the exponents, $a_{j}(\mathrm{j}=1, \ldots, \mathrm{~N})$ and $b_{j}(\mathrm{j}=\mathrm{M}+1, \ldots, \mathrm{Q})$ can take on integer values.

The following sufficient conditions for the absolute convergence of the defining integral for the $\overline{\boldsymbol{H}}$-function given by Bushman and Srivastava ${ }^{2}$.
$\mathrm{T}=\sum_{j=1}^{M} \beta_{j}+\sum_{j=1}^{N}\left|A_{j} \alpha_{j}\right|-\sum_{j=M+1}^{Q}\left|B_{j} \beta_{j}\right|-\sum_{j=N+1}^{P} \alpha_{j}>0$
and $|\arg \mathrm{z}|<\frac{1}{2} \mathrm{~T} \pi$.
If we use $(a, n)=a(a+1)(a+2) \ldots \ldots \ldots \ldots \ldots \ldots .(a+n-1) ;(a, 0)=1$
Where n is some positive integer then Horn's function ${ }^{3}$ of two variables H_{1} and G_{1} are define in following
$H_{1}(\alpha, \beta, \gamma ; \delta ; u, v)=\sum_{r, s=0}^{\infty} \frac{(\alpha, r-s)(\beta, r+s)(\gamma, s)}{(1, r)(1, s)(\delta, r)} u^{r} v^{s}$,
$|\mathrm{x}|<\mathrm{r},|\mathrm{y}|<\mathrm{s}, 4 \mathrm{rs}=(s-1)^{2}$;
$G_{1}(\alpha, \beta, \gamma ; \delta ; u, v)=\sum_{r, s=0}^{\infty} \frac{(\alpha, r+s)(\beta, s-r)(\gamma, r-s)}{(1, r)(1, s)} u^{r} v^{s}$,
$|\mathrm{x}|<\mathrm{r},|\mathrm{y}|<\mathrm{s}, \mathrm{r}+\mathrm{s}=1$

Main Result

$\int_{0}^{\infty} x^{\rho-1}\left[x+a+\left(x^{2}+2 a x\right)^{1 / 2}\right]^{-\sigma} H_{1}\left[\alpha, \beta, \gamma ; u\left\{x+a+\left(x^{2}+2 a x\right)^{\frac{1}{2}}\right\}\right]^{-\mu}$
$v\left[x+a+\left(x^{2}+2 a x\right)^{1 / 2}\right]^{-\vartheta} \bar{H}_{p, q}^{m, n}\left[z\left\{x+a+\left(x^{2}+2 a x\right)^{\frac{1}{2}}\right\}^{-\lambda}\right] d x$
$=2 a^{-\sigma}\left(\frac{a}{2}\right)^{\rho} \Gamma(2 \rho) H_{1}\left[\alpha, \beta, \gamma ; \delta ; \frac{u}{a^{\mu}}, \frac{v}{a^{\vartheta}}\right] \bar{H}_{p+2, q+2}^{m, n+2}\left[z a^{-\lambda} \left\lvert\, \begin{array}{l}\left.(-\sigma-\mu r-\vartheta s, \lambda)_{,(1+\rho-\sigma-\mu r-\vartheta s, \lambda),\left(a_{j}, \alpha_{j}, A_{j}\right)_{1, p}}^{\left(b_{j}, \beta_{j}, B_{j}\right)_{1, q^{\prime}}(1-\sigma-\mu r-\vartheta s, \lambda)_{,(}(-\rho-\sigma-\mu r-\vartheta s, \lambda)}\right]\end{array}\right.\right]$,
Provided,
$\lambda>0, \operatorname{Re}(p, \sigma, \mu, \vartheta)>0, \operatorname{Re}(\rho)-\operatorname{Re}(\sigma)-\lambda \min _{1 \leq j \leq m} \operatorname{Re}\left(\frac{b_{j}}{\beta_{j}}\right)<0$
$\int_{0}^{\infty} x^{\rho-1}\left[x+a+\left(x^{2}+2 a x\right)^{1 / 2}\right]^{-\sigma} G_{1}\left[\alpha, \beta, \gamma ; u\left\{x+a+\left(x^{2}+2 a x\right)^{\frac{1}{2}}\right\}\right]^{-\mu}$
$v\left[x+a+\left(x^{2}+2 a x\right)^{1 / 2}\right]^{-\vartheta} \bar{H}_{p, q}^{m, n}\left[z\left\{x+a+\left(x^{2}+2 a x\right)^{\frac{1}{2}}\right\}^{\lambda}\right] d x$
$=2 a^{-\sigma}\left(\frac{a}{2}\right)^{\rho} \Gamma(2 \rho) G_{1}\left[\alpha, \beta, \gamma ; \delta ; \frac{u}{a^{\mu}}, \frac{v}{a^{\vartheta}}\right] \bar{H}_{p+2, q+2}^{m, n+2}\left[z a^{\lambda} \left\lvert\, \begin{array}{c}\left(a_{j}, \alpha_{j}, A_{j}\right)_{1, p}{ }^{(1+\rho-\sigma-\mu r-\vartheta s, \lambda)(\sigma+\mu r+\vartheta s, \lambda)_{n}} \\ ,(1+\sigma+\mu r+\vartheta s, \lambda)_{1}(\sigma-\rho+\mu r+\vartheta s, \lambda)\left(b_{j}, \beta_{j}, B_{j}\right)_{1, q}\end{array}\right.\right]$,
Provided
$-\lambda>0, R e(p, \sigma, \mu, \vartheta)>0, \operatorname{Re}(\rho)-\operatorname{Re}(\sigma)+\lambda \min _{1 \leq j \leq m} \operatorname{Re}\left(\frac{b_{j}}{\beta_{j}}\right)<0$
Proof: we get the result (6) if given in the left hand side of inayat hussain $\overline{\mathrm{H}}$-function in equation (1) eliminate by contour integral, and Horn's H_{1} function should be represent in series form given in equation (4). Sequence of integral and compilation should be expressed in the form of internal integral of equation (1) ${ }^{4}$.

Similarly we get the result (7), the change of formula (4) by equation (5).
Special cases: On taking $A_{j}=B_{j}=1$ the \bar{H}-function reduces to Fox's H-function and we found that the solution of integral equation (1) in terms of Fox's H-function given in Shrivastava Rajeev and et al ${ }^{5}$. On taking $A_{j}=B_{j}=1$ and $\alpha_{j}=\beta_{j}=c$ ($i=$ $1, \ldots ., p ; j=1, \ldots . ., q)$, the \bar{H}-function reduces to Meijer G-function

Conclusion

The $\overline{\boldsymbol{H}}$-function is a very general function and has for its particular cases a number of important special functions ${ }^{1,2,6}$.

References

1. Inayat-Hussain A.A., New Properties of Hypergeometric Series Derivable from Feynman Integrals: II A Generalization of the H - function, J. Phys. A. Math. Gen., 20 (1987)
2. Bushman R.G. and Srivastava H.M., The H - function associated with a certain class of Feynman integrals, J. Phys. A: Math. Gen., 23, 4707-4710 (1990)
3. Erdelyi A., Higher Transcendental Functions, Mc-Graw Hill, New York, I, .225(13); 224(10) (1953)
4. Hetingar F., Tables of Mellin Transform, Springer-Verlag N.Y., 22 (1974)
5. Shrivastava Rajeev, Vijnana Parishad and Anusandhan patrika, 50(1), (2007)
6. Rathie A.K., le Mathematiche Fasc, II(52), 297-310 (1997)
