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Abstract  

A sample survey remains incomplete in presence of missing data and one of the substitution techniques of missing 

observations is known as imputation. A number of imputation methods are available in literature using auxiliary 

information, for example, Mean method of imputation, Ratio method of imputation, Compromised method of imputation and 

so on. These suggested methods are based on either population parameter of auxiliary variable or available information 

(both study and auxiliary variable) in the sample. Also, the number of available observations is considered as a constant but 

practically, it is not possible, the missing values may vary from sample to sample i.e. it may be considered as random 

variable. If population mean of auxiliary variable is unknown, then all these methods fail to perform. In such situations the 

idea of two-phase sampling is used for estimating population parameters. This paper presents the estimation of mean in 

presence of missing data under two-phase sampling scheme while the numbers of available observations are considered as 

random variable. The bias and m.s.e of suggested estimators are derived in the form of population parameters using the 

concept of large sample approximation. Numerical study is performed over two populations using the expressions of bias 

and m.s.e and efficiency compared with existing estimators. 

 
Keywords: Estimation, missing data, imputation, post-stratification, bias, mean squared error (M.S.E.). 
 

Introduction 

Missing data is a problem encountered in almost every data collection activity but particularly in sample survey. The missing data 

naturally occurs in sample surveys when some, not all sampling units refuse or unable to participate in the survey or when data for 

specific items on a questionnaire completed for an otherwise cooperating unit are missing. For this, some imputation techniques 

are derived in literature by many authors to replace the missing part.  Imputation is a methodology, which uses available data as a 

tool for the replacement of missing observations.  

 

In literature, several imputation techniques are described, some of them are better over others. There is three concepts advocated 

by authors for missingness pattern: OAR (observed at random), MAR (missing at random), and PD (parametric distribution)
1
. If 

the probability of the observed missingness pattern, given the observed and unobserved data, does not depend on the value of the 

unobserved data, then data are missing at random (MAR). The observed data are observed at random (OAR) if for each possible 

value of the missing data and the parameter φ the conditional probability of the observed pattern of missing data given the missing 

data and the observed data, is the same for all possible values of the observed data.  

 

There are different ways and means to control non-response. One way of dealing with the problem of non-response is to make 

more efforts to collect information by taking a sub-sample of units not responding at the first attempt. Another way of dealing with 

the problem of non-response is to estimate the probability of responding informants of their being at home at a specified point of 

time and weighting results with the inverse of this probability. A technique to deal with the problem of non-response was 

developed under the assumption that the population is divided into two classes, a response class who respond in the first attempt 

and a non-response class who did not.
2
 

 

A questionnaire contains many questions that we call items. When item non-response occurs, substantial information about the 

non-respondent is usually available from other items on the questionnaire. Many imputation methods in literature use selection of 

these items as auxiliary variable in assigning values to the i
th
 non-respondent for item y.  

 

Let the variable Y is of main interest and X be an auxiliary variable correlated with Y and the population mean X of auxiliary 

variable is unknown. A large preliminary simple random sample (without replacement) 'S  of 'n  units is drawn from the 
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population { }N,...,2 ,1=Ω  to estimate X  and a secondary sample S of size n ( n < 'n  ) drawn as a sub-sample of the sample 
'S  

to estimate the population mean of main variable. Let the sample S contains 
1

n  responding units and ( )
12

nnn −=  non-responding 

units. Using the concept of post-stratification, sample may be divided into two groups: responding (
1

R ) and non-responding (
2

R ). 

 

The sample may be considered as stratified into two classes namely a response class and non-response class, and then the 

procedure is known as post-stratification. Post-stratification procedure is as precise as the stratified sampling under proportional 

allocation if the sample size is large enough
3
. Estimation problem in sample surveys, in the setup of post-stratification, under non-

response situation is studied and given the concept of utilization of available information related to auxiliary variable X in 

imputation for missing observations of auxiliary information due to non-response
4,5,6

.  

 

Now it may be consider the population has two types of individuals like N1 as number of respondents (
1

R ) and N2 non-respondents 

(
2

R ), Thus the total N units of the population will comprise N1 and N2, respectively, such that N = N1+N2. The population 

proportions of units in the 
1

R  and 
2

R  groups are expressed as W1 = N1/N and W2 = N2 /N such that W1+W2=1.  Further, let Y and 

X  be the population means of Y and X respectively. For every unit 
1

Ri ∈ , the value 
i

y  is observed available. However, for the 

units
2

Ri ∈ , the 
i

y ’s are missing and imputed values are to be derived. The i
th 

value 
i

x of auxiliary variate is used as a source of 

imputation for missing data when 
2

Ri ∈ . This is to assume that for sample S, the data { }Sixx
is

∈= :  are known. The following 

notations are used in the present research manuscript: 

 

nx
−

,
n

y
−

:  the sample mean of X  and Y  respectively in S;  1

−

x ,
1

−

y :  the sample mean of X  and Y  respectively in
1

R  ; 2

X
S , 2

Y
S :  the 

population mean squares of  X  and Y  respectively;  
X

C ,
Y

C : the coefficient of variation of X  and Y   

ρ Correlation Coefficient in population between X and Y. 

Further, consider few more symbolic representations: 
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Large Sample Approximation
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+=  and ( )'
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' 1 eXx +=  , which implies the results 11
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e n  and 1  

'

'

3
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X

x
e . Now by using the concept of two-phase sampling and the mechanism of MCAR,

7
 for given n1, n 

and 
'n  we have : 
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Some Existing Imputation Methods 

Let ∑
=

−=
N

i

iyNY
1

1 be the mean of the finite population under consideration. A Simple Random Sampling Without Replacement 

(SRSWOR), S, of size n is drawn form { }N,...,21=Ω  to estimate the population mean Y . Let the number of responding units 

out of sampled n units be denoted by )nr(r < , the set of responding units, by R, and that of non- responding units by R
c
. For 

every unit Ri ∈ the value 
iy  is observed, but for the units CRi ∈ , the observations 

iy are missing and instead imputed values are 

derived. The i
th 

value 
ix  of auxiliary variate is used as a source of imputation for missing data when CRi ∈ . Assume for S, the 

data { }Si:xx is ∈=  are known with mean ( ) ∑
=

−
=

'n

'i

'i
xnx

1

1

.Under this setup, some well known imputation methods are given 

below: 

 

Mean Method of Imputation: 

For i
y  define i

y•  as  

 Ri     if        y

Ri     if          y

y
C

r

i

i








∈

∈

=•
                        (1) 

Using above, the imputation-based estimator of population mean Y  is:  ∑
∈

==
Ri

rim
yy

r
y

1
       (2) 

The bias and mean squared error is given by 

(i) ( ) 0=myB                 (3) 

(ii)  ( ) 2
11

ym S
Nr

yV 







−≈                (4) 

 

Ratio Method of Imputation: 

For i
y  and i

x , define i
y•  as    

 Ri     if        xb̂

Ri     if          y

y
C

i

i
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∈
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Using above, the imputation-based estimator is: 
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where  ∑
∈
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1
,    ∑
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r

x
1

  and    ∑
∈

=
Si

in x
n

x
1

  

Lemma: The bias and mean squared error of RATy  is given by 

(i)  ( ) ( )xCyCxC
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(7) 
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−≈              where 

X

Y
R =1

         (8) 

 

Compromised Method of Imputation:
8
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where α is a suitably chosen constant, such that the resultant variance of the estimator is optimum. The imputation-based 

estimator, for this case, is  

( ) 







−+=

r

n

rrCOMP

x

x
yyy αα 1                                  (10) 

 

Lemma: The bias, mean squared error and minimum mean squared error at  
X

Y

C

C
ρα −=1

 

of  
COMP

y  is given by 
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Ahmed Methods:
9
 

For the case where jiy denotes the i
th 

available observation for the j
th

 imputation method: 

(1)
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Under this, point estimator is 

1

1
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X
yt                                (15) 

 

Lemma 1: The bias, mean squared error and minimum mean squared error at  
X

Y

C

C
ρβ =1

 

of  
1t  is given by 
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The point estimator is 
2

2
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Lemma: The bias, mean squared error and minimum mean squared error at  
X

Y

C

C
ρβ =2

 

of  
2t  is given by 
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Proposed Different Imputation Methods 

Let  
vji

y  denotes the i
th

 available observation for the j
th
 imputation. We suggest the following imputation methods: 
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where   α is suitably chosen constant, such that the variance the resultant estimator is minimum. Under this method, the point 
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where β  is suitably chosen constant, such that the variance the resultant estimator is minimum. Under this method, the point 

estimator of Y  is  
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(6) 
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Where γ  is suitably chosen constant, such that the variance the resultant estimator is minimum. Under this method, the point 

estimator of Y  is  

γ
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Note: At  )1(1 −=γ then the estimator
3

 
V

T  convert into ratio (product) type estimator in two-phase sampling scheme. 

 

Bias and MSE of Proposed Methods 
Let B(.) and M(.)  denote the bias and mean squared error (M.S.E.) of an estimator under a given sampling design. The properties 

of estimators
 
are derived in the following theorems respectively.  

 

Theorem 1:  

(1) Estimator 
1

 
V

T  in terms of 3,2,1   ; =ie
i

 and '

3
e , could be expressed upto first order of approximation:  
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After replacing value of α  in (38), we obtained 
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(10) Bias of  
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Comparisons 

In this section we derived the conditions under which the suggested estimators are superior to existing estimators.  
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Numerical Illustrations 

We consider two populations A and B, first one is the artificial population of size 200 and another one is of size 8306 with the 

following parameters: 
9,10

 

 

Table-1 

Parameters of Populations A and B 

Population N Y  X  
2
YS  2

XS  ρ  
XC  YC  

A 200 42.485 18.515 199.0598 48.5375 0.8652 0.3763 0.3321 

B 8306 253.75 343.316 338006 862017 0.522231 2.70436 2.29116 

Let 'n = 60, n = 40, 
1

n = 35 for population A and 'n = 2000, n = 500, 
1

n = 450 for population B respectively. Then the bias and 

M.S.E of suggested estimators and existing estimators are given in table 2 and 3 for population A and B respectively. 

 

Table-2 

Bias and MSE for Population A and B 

Estimators Population A Population B 

Bias MSE Bias MSE 

1V
T  -0.00181 2.882792 0.256463 478.9972 

2V
T  0.001983 1.841686 0.050974 561.7505 

3V
T  0.000174 2.338387 0.307437 458.4694 

 

Table-3 

Bias and MSE for Population A and B for Ahmed et al. (2006) 

Estimators Population A Population B 

Bias MSE Bias MSE 

r
y  0 4.692124 0 710.4302 

RAT
y  0.00508 4.908211 0.22994 768.7752 

COMP
y  0.003879 4.188044 0.050411 689.9429 

1
t  0.010856 1.711916 0.43025 537.1631 

2
t  0.001939 4.159944 0.050868 689.9452 

3
t  0.012795 1.179736 0.481117 516.678 

The sampling efficiency of suggested estimators over existing is defined as: 
( )[ ]

( )[ ]
1,2,3;i;

i
tMOpt

V1
TMOpt

i
E ==    (47) 

The efficiency for population A and population B are given in table 4. 

 

Table-4 

Efficiency for Population A and B 

Efficiency Population A Population B 

1
E  1.683957 0.891717 

2
E  0.442719 0.814196 

3
E  1.982128 0.887341 
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Discussion 

The idea of two-phase sampling is used while considering, the auxiliary population mean is unknown and numbers of available 

observations are considered as random variable. Some strategies are suggested and the estimators for population mean are derived. 

Properties of derived estimators like bias and m.s.e are also discussed in this paper. The optimum value of parameters of suggested 

estimators is obtained as well in same section. Some existing estimators are considered for comparison purpose and two 

populations A and B considered for numerical study. The sampling efficiency of suggested estimator is calculated and suggested 

strategy is found very close with existing when X  is not known. 

 

Conclusions 

The proposed estimators are useful when some observations are missing in the sampling and population mean of auxiliary 

information is unknown. Proposed estimator 2VT
 
is found to be more efficient than the existing estimators. The estimators 1VT

 
and 3VT  results are also close with Ahmed estimators. 
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