The Relationship between Least Square and Linear Programming

Jaber Adnan Shamkhi
Faculty of Administration and Economic, Babylon University, Babylon city, IRAQ
Available online at: www.isca.in
Received $22^{\text {nd }}$ November 2012, revised $19^{\text {th }}$ January 2013, accepted 20 ${ }^{\text {th }}$ February 2013

Abstract

The predication is an important tool for planning where the aim of any statistician is to predicate the values of dependent variable which minimize the errors (the different between actual and predicated value). The least square method is classical method which is used to achieve this purpose. The predication by using least square method depends on minimizing the sum square of error. This paper introduces the restrictions of least square method, while the predication by using linear programming method depends on the assumation of minimizing the sum of absolute errors.

Keywords: Least square method, linear programming method, absolute errors.

Introduction

The purpose of least square and linear programming methods are minimize the errors for any linear mode ${ }^{1}$. so to compare these methods we introduce the constraints of least square method ${ }^{2}$, and we put assumption of minimizing of the sum of absolute errors for linear programming method.

Methodology

Least Square Method: The estimation of parameter model ${ }^{3} . B_{j}, j=1,2, \ldots, k$ of least square method is defined as follows ${ }^{4}$:$\operatorname{Min} z=e_{1}^{2}+e_{2}^{2}+\cdots+e_{2}^{2}$
s.t
$B_{0}+B_{1} x_{i 1}+\cdots+E_{k} x_{i k}+\theta_{i}=y i, i=1,2, \ldots, n i n, e_{i}$ wrestricted in sign

Linear Programming Method: The predication formula by using this method depends on the assumation:
$\operatorname{Min} z=\left\|e_{1}\right\|+\mid e_{2}\|+\ldots+\| e_{n} \|$
So ,to estimate the parameter model B_{j} suppose ${ }^{5} e_{i}=\epsilon_{i}^{+}-\theta_{i}^{-}$
Because ei unrestricted in sign also ${ }^{6}$. the restriction of linear programming method is nonnegative variables $\left(B_{j}\right)^{7}$.
So, the model becomes as follows:-
$\operatorname{Min} z=e_{1}^{+}+\theta_{1}+\cdots+e_{12}^{+}+e_{n}^{-}$
s.t:
$B_{0}+B_{1} x_{1 i}+\cdots+B_{k} x_{i n}+\theta_{i}^{+}-\theta_{i}^{-}=y_{i} B_{j}$ wnrestricted in sign $\theta_{i}^{+}, \theta_{i}^{-} \geq 0$
Example: Consider, the linear model ${ }^{8} y=B_{0}+E_{1} x_{i}+\theta_{i}$
Where: y_{i} represent the monthly average income per capita. x_{i} represent the monthly average expenditure per capita.
So, to estimate the parameter model E_{j} by using least square method is defined as follows $9 \operatorname{Min} z=\varepsilon_{1}^{2}+\cdots+\varepsilon_{1 B}^{2}$
s.t:
$B_{0}+10.2 B_{1}+E_{1}=6.10$
$B_{0}+10.32 B_{1}+e_{2}=5.48$
$B_{0}, B_{1}, \theta_{1}, \ldots, \theta_{16}$ unrestricted in sign

Table-1
Show the values of parameter, errors and objective functions for two methods

Variables	Least square	Linear programming (simplex)*
$\mathrm{b}_{0}{ }^{+}$	3.568073	3.0018506
$\mathrm{b}_{0}{ }^{-}$	0	0
$\mathrm{b}_{1}{ }^{+}$	0.280519	0.31850788
$\mathrm{b}_{1}{ }^{-}$	0	0
e_{1}^{+}	-0.3293668	0
$\mathrm{e}_{1}{ }^{-}$	0	0.15063103
$\mathrm{e}_{2}{ }^{+}$	-0.98302908	0
$\mathrm{e}_{2}{ }^{-}$	0	0.80885172
$\mathrm{e}_{3}{ }^{+}$	-0.4235225	0
$\mathrm{e}_{3}{ }^{-}$	0	0.25618345
$\mathrm{e}_{4}{ }^{+}$	-0.2165086	0
$\mathrm{e}_{4}{ }^{-}$	0	0.12134842
$\mathrm{e}_{5}{ }^{+}$	-0.04045596	0
$\mathrm{e}_{5}{ }^{\text {a }}$	0	0
$\mathrm{e}_{6}{ }^{+}$	-0.13255939	0
$\mathrm{e}_{6}{ }^{\text {- }}$	0	0.12895234
e_{7}^{+}	0.13289566	0.09661418
$\mathrm{e}_{7}{ }^{-}$	0	0
$\mathrm{e}_{8}{ }^{+}$	0.29562419	0.16627026
$\mathrm{e}_{8}{ }^{-}$	0	0
$\mathrm{eg}_{9}{ }^{+}$	0.40074107	0.26530853
$\mathrm{e}_{9}{ }^{-}$	0	0
$\mathrm{e}_{10}{ }^{+}$	0.3992064	0.18096179
$\mathrm{e}_{10}{ }^{-}$	0	0
$\mathrm{e}_{11}{ }^{+}$	0.3912076	0.08520817
$\mathrm{e}_{11}{ }^{-}$	0	0
$\mathrm{e}_{12}{ }^{+}$	0.50671882	0.07687327
$\mathrm{e}_{12}{ }^{-}$	0	0
$\mathrm{e}_{13}{ }^{+}$	0.35105728	0
$\mathrm{e}_{13}{ }^{-}$	0	0.14184997
$\mathrm{e}_{14}{ }^{+}$	0.73965561	0.17342989
$\mathrm{e}_{14}{ }^{-}$	0	0
$\mathrm{e}_{15}{ }^{+}$	0.75389175	0
$\mathrm{e}_{15}{ }^{-}$	0	0
$\mathrm{e}_{16}{ }^{+}$	-1.5151926	0
$\mathrm{e}_{16}{ }^{-}$	0	2.7876320
R_{1}	-	0
R_{2}	-	0
R_{3}	-	0
R_{4}	-	0
R_{5}	-	0
R_{6}	-	0
R_{7}	-	0
R_{8}	-	0
R_{9}	-	0
R_{10}	-	0
R_{11}	-	0
R_{12}	-	0
R_{13}	-	0
R_{14}	-	0
R_{15}	-	0
R_{16}	-	0
Z	5.689599	5.440116

[^0]And the estimation parameter model Bj by using linear programming method (simplex) ${ }^{10}$, is defined as follows:
$\operatorname{Minz}=e_{1}^{+}+e_{1}^{-}+\cdots+e_{16}^{+}+e_{16}^{-}$
s.t:
$B_{0}^{+}-B_{0}^{-}+10.20\left(B_{1}^{+}-B_{1}^{-}\right)+e_{1}^{+}-e_{1}^{-}+R_{1}=6.10$
$B_{0}^{+}-B_{0}^{-}+10.32\left(B_{1}^{+}-B_{1}^{-}\right)+e_{2}^{+}-e_{2}^{-}+R_{2}=5.48$
$B_{0}^{+}-B_{0}^{-}+48.40\left(B_{1}^{+}-B_{1}^{-}\right)+\theta_{16}^{+}-e_{16}^{-}+R_{16}=15.63$
$B_{0}^{+}, B_{0}^{-}, B_{1}^{+}, B_{1}^{-}, \theta_{1}^{+}, \Theta_{1}^{-}, \ldots, \theta_{16}^{+}, \Theta_{16}^{-}, R_{1}, \ldots, R_{16} \geq 0$

Result and Discussion

The table (1) shows the values of parameters, errors and the objective function values for two methods.

Conclusion

The researcher reach the following conclusions: i. The estimation of parameter of both methods is approximately equal. ii. The value of objective function of both methods is approximately equal, as well. iii. There is strong relationship between both methods. iv. The aim of both methods is to minimize the errors.

Table-2
Shows the monthly average income per capita (\mathbf{y}) and the monthly average expenditure per capita(x)

\mathbf{Y}	\mathbf{X}
6.10	10.20
5.48	10.32
6.09	10.50
6.83	12.40
7.41	13.84
7.59	14.81
8.15	15.86
9	18.31
9.15	18.47
9.76	20.65
10.40	22.96
11.43	26.22
11.74	27.88
12.67	29.81
14.07	34.75
15.63	48.40

The minister of planning, family budget 1979

References

1. Phillips. Operations research, principles and practice, John Wlley andSons, Newyok 13-55 (1976)
2. Lugnberger D.G., Introduction to linear and nonlinear programming, Addision.wesely (1973)
3. Hamdy A. Taha, operations research an introduction, $3^{\text {rd }}$ ed. Macmillian 42-62 (1982)
4. Seber. A.F, Linear regression analysis, John wiley and Sons (1977)
5. Dantizig ,G.B., Linear programming and extensions, Princeton, N.J (1963)
6. Hillierand Lieberman, introduction to operations research, $3^{\text {rd }}$ ed. ,Holden-day ,Inc. Oakland 21-42 (1980)
7. Skalavathy, operations research, $3^{\text {rd }}$ ed. Vikas publishing house PVT LTD 35-81 (2005)
8. Gass S.I., linear programming, $2^{\text {nd }}$ ed. ,McGraw -Hill company, newyork 59-83 (1958)
9. Draper N. and smith , Applied regression analysis, $2^{\text {nd }}$ ed. Wiley, newyork (1981)
10. Gupta P.K and Hiar D.S, Operations research, S. chand and company LTD, New delhi, $60-80$ (1979)

[^0]: *: treationNo = 26

