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Abstract

The main aim of the present paper is to find the application of certain products involving Aleph function (N-function) and

generalized polynomials in obtaining a solution of the partial differential equation, 3°¢ _  , d*¢ Concerning to a problem
at? o ax?

of angular displacement in a shaft.
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Introduction

Let the problem of determining the twist ¢(x,t) in a shaft of circular section with its axis along the x-axis. Now the displacement
O(x,t) due to initial twist must satisfy the boundary value problem"*’. If we assume that both the ends x = 0 and x = p of the shaft

2 2
are free O ¢:k28 0 (1)
0t? ox 2
Where k is a constant 9 ¢ d¢ )

—(0,t) =0, —/(x,00 and ¢(x,0) = f(x)
dx Jx
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The Aleph function introduced by Siidland et al* is defined as Mellin-Barnes type contour integrals as following
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The | _ . is a suitable contour of the Mellin-Barnes type which runs from y—ieo to y+ico with Y € R, the integers m,n, p, q satisfy

the inequality 0 < n < p;, I <m < q;, ¢; > 0; 1= 1,...,r. The parameters A;, B;, A;;, Bji are positive real numbers and a;, b;, aj;, b;; are
complex numbers, such that the poles of (b, +B <), j = 12,.....m separating from those of "(1—a - A ), J=1L...n
i j

All the poles of the integrand (4) are supposed to be easy and empty products are considered as unity. The existence conditions’ for
the Aleph function (4) are given below:
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The generalized polynomial defined by Srivastava’ is as follows: g™1™s [x x ]= ™ S~ Mg
npn, LR X L ol T ol
(Xl— (XS— 1 s
- o & 10
Bn .o s.in o Ix xS (10)

Where n; = 0, 1, 2... Vi=(l,..,8), m,..,m_ are arbitrary positive integers and the coefficients [n o ;.;n ,o ] are

1
arbitrary constants, real or complex.

The Main Result: We derive the following result:
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... n ,o0 | arearbitrary constants, real or complex.
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Where m is an arbitrary positive integer and the coefficient

Evaluation of (11): The integral in (11) can be derived by using of the Aleph function in terms of Mellin-Barnes contour integral
given by (4) and the definition of a generalized polynomials given by (10), then interchanging the order of summation and
integration, find the inner integral by using a result given by Chaurasia and Gupta’ and we get the desired result.

Solution of the Problem posed: The solution of the problem to be established is
1 [n;/m] ["S/ms](_n1)m1al (—ns)

m_o

O(x, t) = —— . * = Bn ,0 ;.;n ,0 ]y, ..y S
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221+22 kK, | [l—ﬁ—%—i kiai,h;l}(aj,Aj)l,n LCi(ajy ,Aji)]ml,p;:rs[ﬂ—i kiai,ZhJ
i=1 m+1,n+1 i=1 i=1
=———— X el ™ (1 _ 2 ¢
1—‘(2,2.) pit2,q;+1,¢;3 |: 74 h (E_‘H-E_El k;o; ,h],(bj,Bj)]'m LG (0B ) mitgy e
(Cos mx](cos nt R t] (12)
u n

Which are valid under the same conditions used for (11)

Derivation of (12): The solution of the problem can be written as (by using Churchill®)

o(x, 1) =15a0+21 a,(cos ﬂzrj(cos m:uRt] (13)

Where a_ (7=0,1,2,...) are the coefficients in the Fourier Cosine Series for f(x) in the interval (O,u), If t = 0, then by virtue of
(1.3), we get
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Now multiplying (14) both sides by [ cos T x j and integrate with respect to x from 0 top, we get
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Using (11) along with orthogonal property of the cosine functions, we get
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Now by using (13) and (16), we get the desired solution in (12).

Numerical Results: i. Taking C; = 1, i = 1,...,r in (4), the Aleph function coincide with the I-function given by Saxena”'’.ii. Again

forr=1and C, = 1, taking S = 2 and k; — 0 in (11), we find the known result concluded by Chaurasia and Godika''. iii. Taking H -
function in place of Aleph-function in (11), we get the known result obtained by Chaurasia and Shekhawat'?.

Conclusion

The result so established may be found useful in several interesting situation appearing in the literature on mathematical analysis,
applied mathematics and mathematical physics.
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