# Angular Displacement in A Shaft Associated with the Aleph Function and Generalized Polynomials 

Shekhawat Ashok Singh and Garg Harshita<br>Department of Mathematics, Arya College of Engineering and Information Technology, Jaipur, Rajasthan, INDIA

Available online at: www.isca.in, www.isca.me
Received $2^{\text {nd }}$ October 2013, revised $24^{\text {th }}$ October 2013, accepted $5^{\text {th }}$ November 2013


#### Abstract

The main aim of the present paper is to find the application of certain products involving Aleph function ( $\boldsymbol{\aleph}$-function) and generalized polynomials in obtaining a solution of the partial differential equation, $\frac{\partial^{2} \phi}{\partial \mathrm{t}^{2}}=\mathrm{k}^{2} \frac{\partial^{2} \phi}{\partial \mathrm{x}^{2}}$ Concerning to a problem of angular displacement in a shaft.


Keywords: Aleph Function, general class of polynomials, partial differential equation, Angular displacement.

## Introduction

Let the problem of determining the twist $\phi(x, t)$ in a shaft of circular section with its axis along the $x$-axis. Now the displacement $\phi(x, t)$ due to initial twist must satisfy the boundary value problem ${ }^{1,2,3}$. If we assume that both the ends $x=0$ and $x=\mu$ of the shaft are free $\frac{\partial^{2} \phi}{\partial t^{2}}=k^{2} \frac{\partial^{2} \phi}{\partial x^{2}}$

Where $k$ is a constant $\frac{\partial \phi}{\partial \mathrm{x}}(0, \mathrm{t})=0, \frac{\partial \phi}{\partial \mathrm{x}}(\mathrm{x}, 0)$ and $\phi(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$
Let $f(x)=\left(\sin \frac{\pi x}{2 \mu}\right)^{2 \delta-\lambda-1}\left(\cos \frac{\pi x}{2 \mu}\right)^{\lambda-1} S_{n_{1}, \ldots, n_{s}}^{m_{1}, \ldots, m_{s}}\left[y_{1}\left(\tan \frac{\pi x}{2 \mu}\right)^{2 k_{1}}, \ldots, y_{s}\left(\tan \frac{\pi x}{2 \mu}\right)^{2 k_{s}}\right]{\underset{\sim}{p_{i}, q_{i}, c_{i} ; r}}_{m, r}^{m}\left[\operatorname{z}\left(\tan \frac{\pi x}{2 \mu}\right)^{2 h}\right]$
The Aleph function introduced by Südland et al ${ }^{4}$ is defined as Mellin-Barnes type contour integrals as following


$$
\begin{equation*}
=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{L}} \Omega_{\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}} ; \mathrm{r}}^{\mathrm{m}, \mathrm{n}}(\xi) \mathrm{z}^{-\xi} \mathrm{d} \xi \tag{4}
\end{equation*}
$$

For all $\mathrm{z} \neq 0$, where $\mathrm{i}=\sqrt{-1}$ and
$\Omega \underset{p_{i}, q_{i}, c_{i} ; r}{m, n}(\xi)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+B_{j} \xi\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-A_{j} \xi\right)}{\sum_{i=1}^{r} c_{i} \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}+A_{j i} \xi\right) \prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j}-B_{j i} \xi\right)}$
The $L^{L}=L_{i \gamma \infty}$ is a suitable contour of the Mellin-Barnes type which runs from $\gamma-\mathrm{i} \infty$ to $\gamma+\mathrm{i} \infty$ with $\gamma \in R$, the integers $m, n, p$, $q$ satisfy the inequality $0 \leq n \leq p_{i}, 1 \leq m \leq q_{i}, c_{i}>0 ; i=1, \ldots, r$. The parameters $A_{j}, B_{j}, A_{j i}, B_{j i}$ are positive real numbers and $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}, \mathrm{a}_{\mathrm{ji}}, \mathrm{b}_{\mathrm{ji}}$ are complex numbers, such that the poles of $\Gamma\left(b_{j}+B_{j} \xi\right), j=1,2, \ldots \ldots, m$ separating from those of $\Gamma\left(1-a_{j}-A_{j} \xi\right), j=1, \ldots, n$. All the poles of the integrand (4) are supposed to be easy and empty products are considered as unity. The existence conditions ${ }^{5}$ for the Aleph function (4) are given below:
$\psi_{\mathrm{k}}>0,|\arg (\mathrm{z})|<\frac{\pi}{2} \psi_{\mathrm{k}} ; \mathrm{k}=1, \ldots, \mathrm{r}$,
$\psi_{\mathrm{k}} \geq 0,|\arg (\mathrm{z})|<\frac{\pi}{2} \psi_{\mathrm{k}}$ and $\mathrm{R}\left\{\Lambda_{\mathrm{k}}\right\}+1<0$
Where, $\Psi_{k}=\sum_{j=1}^{n} A_{j}+\sum_{j=1}^{m} B_{j}-C_{k}\left(\sum_{j=n+1}^{p_{k}} A_{j k}+\sum_{j=m+1}^{q_{k}} B_{j k}\right)$
$\Lambda_{k}=\sum_{j=1}^{m} b_{j}-\sum_{j=1}^{n} a_{k}+C_{k}\left(\sum_{j=1}^{q_{k}} b_{j k}-\sum_{j=n+1}^{p_{k}} a_{j k}\right)+\frac{1}{2}\left(p_{k}-q_{k}\right)$
The generalized polynomial defined by Srivastava ${ }^{6}$ is as follows: $S_{n_{1}, \ldots, n_{s}}^{m_{1}}\left[x_{1}, \ldots, x_{s}\right]=\sum_{\alpha_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{\alpha_{s}=0}^{\left[n_{s} / m_{s}\right]\left(-n_{1}\right)_{m_{1} \alpha_{1}}} \frac{\left(-n_{s}\right)_{m_{s}} \alpha_{s}}{\alpha_{1}!}$
$B\left[n_{1}, \alpha_{1} ; \ldots ; n_{s}, \alpha_{s}\right] x_{1}^{\alpha_{1}} \ldots x_{s}{ }_{s}$

Where $\mathrm{n}_{\mathrm{i}}=0,1,2 \ldots \forall \mathrm{i}=(1, \ldots, \mathrm{~s}), \quad \mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{s}}$ are arbitrary positive integers and the coefficients $\left[\mathrm{n}_{1}, \alpha_{1} ; \ldots ; \mathrm{n}_{\mathrm{s}}, \alpha_{\mathrm{s}}\right]$ are arbitrary constants, real or complex.

The Main Result: We derive the following result:

$=\frac{\mu 2^{2 \delta-\lambda+2} \sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}}{\Gamma(2 \mathrm{~d}) \sqrt{\pi}} \sum_{\alpha_{1}=0}^{\left[\mathrm{n}_{1} / \mathrm{m}_{1}\right]} \cdots \sum_{\alpha_{\mathrm{s}}=0}^{\left[\mathrm{n}_{\mathrm{s}} / \mathrm{m}_{\mathrm{s}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{\mathrm{m}_{1} \alpha_{1}}}{\alpha_{1}!} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{\mathrm{m}_{\mathrm{s}} \alpha_{\mathrm{s}}}}{\alpha_{\mathrm{s}}!}$
$\mathrm{B}\left[\mathrm{n}_{1}, \alpha_{1} ; \ldots ; \mathrm{n}_{\mathrm{s}}, \alpha_{\mathrm{s}}\right] \mathrm{y}_{1}^{\alpha_{1}} \ldots \mathrm{y}_{\mathrm{s}}^{\alpha_{\mathrm{s}}} \mathrm{S}_{\mathrm{p}_{\mathrm{i}}+2, \mathrm{q}_{\mathrm{i}}+1, \mathrm{c}_{\mathrm{i}} ; \mathrm{r}}^{\mathrm{m}, 1,+1}\left[\left.\frac{1}{\mathrm{z} 4^{\mathrm{h}}} \right\rvert\,\right.$
$\left.\begin{array}{l}\left.\left(1-\delta+\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, \mathrm{h} ; 1\right),\left(\mathrm{a}_{\mathrm{j}}, \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{n}},\left[\mathrm{C}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{ji}}, \mathrm{A}_{\mathrm{ji}}\right)\right]_{\mathrm{n}+1, \mathrm{p}_{\mathrm{i}} ; \mathrm{r}},\left(\lambda-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, 2 \mathrm{~h}\right)\right] \\ \left(\frac{1}{2}-\delta+\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, \mathrm{h}\right),\left(\mathrm{b}_{\mathrm{j}}, \mathrm{B}_{\mathrm{j}}\right)_{1, \mathrm{~m}},\left[\mathrm{C}_{\mathrm{i}}\left(\mathrm{b}_{\mathrm{ji}}, \mathrm{B}_{\mathrm{ji}}\right)\right]_{\mathrm{m}+1, \mathrm{q}_{\mathrm{i}} ; \mathrm{r}}\end{array}\right]$
Where $\mathrm{k}_{\mathrm{i}}>0(\mathrm{i}=1, \ldots, \mathrm{~s}), \mathrm{h}>0, \operatorname{Re}\left(\lambda-2 \mathrm{k} \frac{\mathrm{b}_{\mathrm{j}}}{\mathrm{B}_{\mathrm{j}}}\right)>0(\mathrm{j}=1, \ldots, \mathrm{~m}), \mathrm{m}$ is an arbitrary positive integer and the coefficient
$B\left[n_{1}, \alpha_{1} ; \ldots ; n_{s}, \alpha_{s}\right]$ are arbitrary constants, real or complex.

Evaluation of (11): The integral in (11) can be derived by using of the Aleph function in terms of Mellin-Barnes contour integral given by (4) and the definition of a generalized polynomials given by (10), then interchanging the order of summation and integration, find the inner integral by using a result given by Chaurasia and Gupta ${ }^{7}$ and we get the desired result.

Solution of the Problem posed: The solution of the problem to be established is
$\phi(\mathrm{x}, \mathrm{t})=\frac{1}{2^{\lambda} \sqrt{\pi}} \sum_{\alpha_{1}=0}^{\left[\mathrm{n}_{1} / \mathrm{m}_{1}\right]} \ldots \sum_{\alpha_{\mathrm{s}}=0}^{\left[\mathrm{n}_{\mathrm{s}} / \mathrm{m}_{\mathrm{s}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{m_{1} \alpha_{1}}}{\alpha_{1}!} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{m_{\mathrm{s}} \alpha_{s}}}{\alpha_{\mathrm{s}}!} B\left[\mathrm{n}_{1}, \alpha_{1} ; \ldots ; \mathrm{n}_{\mathrm{s}}, \alpha_{\mathrm{s}}\right] \mathrm{y}_{1}^{\alpha_{1}} \ldots \mathrm{y}_{\mathrm{s}}^{\alpha_{s}}$
$=\frac{2^{2 \tau+2} \sum_{\mathrm{i}=1}^{s} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}}{\Gamma(2 \tau)} \aleph_{\mathrm{p}_{\mathrm{i}}+2, \mathrm{q}_{\mathrm{i}}+1, \mathrm{c}_{\mathrm{i}} ; \mathrm{r}}^{\mathrm{m}+\mathrm{r}+\mathrm{r}}\left[\frac{1}{\mathrm{z} 4^{\mathrm{h}}} \left\lvert\, \begin{array}{l}\left(1-\tau+\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{s} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, \mathrm{h} ; 1\right),\left(\mathrm{a}_{\mathrm{j}}, \mathrm{A}_{\mathrm{j}}\right)_{1, \mathrm{n}},\left[\mathrm{C}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{ji}}, \mathrm{A}_{\mathrm{ji}}\right)\right]_{\mathrm{n}+1, \mathrm{p}_{\mathrm{i}} ; \mathrm{r}},\left(\lambda-\sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, 2 \mathrm{~h}\right) \\ \left(\frac{1}{2}-\tau+\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{s} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, \mathrm{h}\right),\left(\mathrm{b}_{\mathrm{j}}, \mathrm{B}_{\mathrm{j}}\right)_{1, \mathrm{~m}},\left[\mathrm{C}_{\mathrm{i}}\left(\mathrm{b}_{\mathrm{j} i}, \mathrm{~B}_{\mathrm{ji}}\right)_{\mathrm{m}+1, \mathrm{q}_{\mathrm{i}} ; \mathrm{r}}\right.\end{array}\right.\right]$
$\left(\cos \frac{\pi \tau \mathrm{x}}{\mu}\right)\left(\cos \frac{\pi \tau \mathrm{R} \mathrm{t}}{\mu}\right)$
Which are valid under the same conditions used for (11)
Derivation of (12): The solution of the problem can be written as (by using Churchill ${ }^{8}$ )

$$
\begin{equation*}
\phi(\mathrm{x}, \mathrm{t})=\frac{1}{2} \mathrm{a}_{0}+\sum_{\tau=1}^{\infty} \mathrm{a}_{\tau}\left(\cos \frac{\pi \mathrm{x} \tau}{\mu}\right)\left(\cos \frac{\pi \tau \mathrm{Rt}}{\mu}\right) \tag{13}
\end{equation*}
$$

Where $\mathrm{a}_{\tau}(\tau=0,1,2, \ldots)$ are the coefficients in the Fourier Cosine Series for $\mathrm{f}(\mathrm{x})$ in the interval $(0, \mu)$, If $\mathrm{t}=0$, then by virtue of (1.3), we get

$$
\begin{align*}
& \left(\sin \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \delta-\lambda-1}\left(\cos \frac{\pi \mathrm{x}}{2 \mu}\right)^{\lambda-1} \mathrm{~S}_{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{s}}}^{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{s}}}\left[\mathrm{y}_{1}\left(\tan \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \mathrm{k}_{1}}, \ldots, \mathrm{y}_{\mathrm{s}}\left(\tan \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \mathrm{k}_{\mathrm{s}}}\right] \\
& \mathfrak{N}_{\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}} ; \mathrm{r}}^{\mathrm{m}, \mathrm{r}}\left[\mathrm{z}\left(\tan \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \mathrm{~h}}\right]=\frac{1}{2} \mathrm{a}_{0}+\sum_{\tau=1}^{\infty} \mathrm{a}_{\tau}\left(\cos \frac{\pi \tau \mathrm{x}}{\mu}\right) \tag{14}
\end{align*}
$$

Now multiplying (14) both sides by $\left(\cos \frac{\pi \delta \mathrm{x}}{\mu}\right)$ and integrate with respect to x from 0 to $\mu$, we get

$$
\begin{align*}
& \int_{0}^{\mu}\left(\cos \frac{\pi \delta \mathrm{x}}{\mu}\right)\left(\sin \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \delta-\lambda-1}\left(\cos \frac{\pi \mathrm{x}}{2 \mu}\right)^{\lambda-1} \mathrm{~S}_{\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{s}}}^{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{s}}}\left[\mathrm{y}_{1}\left(\tan \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \mathrm{k}_{1}}, \ldots,\right. \\
& \left.\mathrm{y}_{\mathrm{s}}\left(\tan \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \mathrm{k}_{\mathrm{s}}}\right] \aleph_{\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}} ; \mathrm{r}}^{\mathrm{m}, \mathrm{r}}\left[\mathrm{z}\left(\tan \frac{\pi \mathrm{x}}{2 \mu}\right)^{2 \mathrm{~h}}\right] \\
& =\frac{1}{2} \mathrm{a}_{0} \int_{0}^{\mu}\left(\cos \frac{\pi \delta \mathrm{x}}{\mu}\right) \mathrm{dx}+\sum_{\tau=1}^{\infty} \mathrm{a}_{\tau}\left(\cos \frac{\pi \tau \mathrm{x}}{\mu}\right)\left(\cos \frac{\pi \delta \mathrm{x}}{\mu}\right) \mathrm{dx} \tag{15}
\end{align*}
$$

Using (11) along with orthogonal property of the cosine functions, we get

$$
\begin{align*}
& \mathrm{a}_{\tau}=\frac{2^{2 \tau-\lambda+2} \sum_{\mathrm{i}=1}^{\mathrm{s}} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}+1}{\sqrt{\pi} \Gamma(2 \tau)} \sum_{\alpha_{1}=0}^{\left[\mathrm{n}_{1} / \mathrm{m}_{1}\right]} \ldots \sum_{\alpha_{\mathrm{s}}=0}^{\left[\mathrm{n}_{\mathrm{s}} / \mathrm{m}_{\mathrm{s}}\right]} \frac{\left(-\mathrm{n}_{1}\right)_{\mathrm{m}_{1} \alpha_{1}}}{\alpha_{1}!} \ldots \frac{\left(-\mathrm{n}_{\mathrm{s}}\right)_{\mathrm{m}_{\mathrm{s}} \alpha_{\mathrm{s}}}}{\alpha_{\mathrm{s}}!} \mathrm{B}\left[\mathrm{n}_{1}, \alpha_{1} ; \ldots ; \mathrm{n}_{\mathrm{s}}, \alpha_{\mathrm{s}}\right] \mathrm{y}_{1}^{\alpha_{1}} \ldots \mathrm{y}_{\mathrm{s}}^{\alpha_{\mathrm{s}}} \\
& . \boldsymbol{N}_{\mathrm{p}_{\mathrm{i}}+2, \mathrm{q}_{\mathrm{i}}+1, \mathrm{c}_{\mathrm{i}} ; \mathrm{r}}^{\mathrm{m+1,n+1}}\left[\frac{1}{\mathrm{Z} 4^{\mathrm{h}}} \left\lvert\, \begin{array}{l}
\left(\begin{array}{l}
1-\tau+\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{s} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, \mathrm{~h} ; 1
\end{array}\right),\left(\mathrm{a}_{\mathrm{j}}, \mathrm{~A}_{\mathrm{j}}\right)_{1, \mathrm{n}},\left[\mathrm{C}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{jij}}, \mathrm{~A}_{\mathrm{ji}}\right)\right]_{\mathrm{n}+1, \mathrm{p}_{\mathrm{i}} ;},\left(\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{s} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, 2 \mathrm{~h}\right) \\
\left(\frac{1}{2}-\tau+\frac{\lambda}{2}-\sum_{\mathrm{i}=1}^{s} \mathrm{k}_{\mathrm{i}} \alpha_{\mathrm{i}}, \mathrm{~h}\right),\left(\mathrm{b}_{\mathrm{j}}, \mathrm{~B}_{\mathrm{j}}\right)_{1, \mathrm{~m}},\left[\mathrm{C}_{\mathrm{i}}\left(\mathrm{~b}_{\mathrm{ji}}, \mathrm{~B}_{\mathrm{ji}}\right)\right]_{\mathrm{m}+1, \mathrm{q}_{\mathrm{i}} ; r}
\end{array}\right.\right] \tag{16}
\end{align*}
$$

Now by using (13) and (16), we get the desired solution in (12).
Numerical Results: i. Taking $\mathrm{C}_{\mathrm{i}}=1, \mathrm{i}=1, \ldots, \mathrm{r}$ in (4), the Aleph function coincide with the I-function given by Saxena ${ }^{9,10}$.ii. Again for $\mathrm{r}=1$ and $\mathrm{C}_{1}=1$, taking $\mathrm{S}=2$ and $\mathrm{k}_{\mathrm{i}} \rightarrow 0$ in (11), we find the known result concluded by Chaurasia and Godika ${ }^{11}$. iii. Taking $\overline{\mathrm{H}}-$ function in place of Aleph-function in (11), we get the known result obtained by Chaurasia and Shekhawat ${ }^{12}$.

## Conclusion

The result so established may be found useful in several interesting situation appearing in the literature on mathematical analysis, applied mathematics and mathematical physics.

## Acknowledgement

The authors are thankful to Professor H.M. Srivastava, University of Victoria, Canada for valuable comments and suggestions in the preparation of this paper.

## References

1. Dutta B.K., Arora L.K. and Borah J., on the solution of fractional kinetic equation, Gen. Math. Notes, 6(1), 40-48 (2011)
2. Haubold H.J. and Mathai A.M., The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 327, 53-63 (2000)
3. Saxena R.K., Mathai A.M. and Haubold H.J., On generalized fractional kinetic equations, Phys. A., 344, 653-664 (2004)
4. Südland N., Baumann B. and Nonnenmacher T.F., Who knows about the Aleph (※)-function? Fract, Calc. Appl. Anal., 1(4), 401-402 (1998)
5. Saxena R.K. and Pogany T.K.: Mathieu-type series for the Aleph-function occurring in Fokker-Planck equation, Eur. J. Pure Appl. Math., 3(6), 958-979 (2010)
6. Srivastava H.M., A multilinear generating function for the Konhauser sets of bi-orthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math., 117, 183-191 (1985)
7. Chaurasia V.B.L. and Gupta V.G., The H-function of several complex variables and angular displacement in a shaft - II, Indian J. Pure Appl. Math., 14(5), 588-595 (1983)
8. Churchill R.V., Fourier series and boundary value problems, McGraw-Hill Book Co., Inc. New York (1941)
9. Saxena V.P., The I-function, Anamaya Publishers, New Delhi (2008)
10. Shukla Manoj Kumar, Pandey Sunil and Shrivastava Rajeev, On Some Integral Relations involving I-Function with Applications, Res. J. Mathematical and Statistical Sci., 1(1), 14-18 (2013)
11. Chaurasia V.B.L. and Godika A., A solution of the partial differential equation of angular displacement in shaft - II, Acta Ciencia Indica, 23M(1), 77-89 (1997)
12. Chaurasia V.B.L. and Shekhawat A.S., An application of $\overline{\mathrm{H}}$-function and a generalized polynomials in the study of angular displacement in a shaft - II, Appl. Sci. Period, 8(1), 37-46 (2006)
