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Abstract  

The main aim of the present paper is to find the application of certain products involving Aleph function (ℵ-function) and 

generalized polynomials in obtaining a solution of the partial differential equation, 
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of angular displacement in a shaft. 
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Introduction 

Let the problem of determining the twist φ(x,t) in a shaft of circular section with its axis along the x-axis. Now the displacement 

φ(x,t) due to initial twist must satisfy the boundary value problem
1,2,3

. If we assume that both the ends x = 0 and x = µ of the shaft 

are free 
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The Aleph function introduced by Südland et al
4
 is defined as Mellin-Barnes type contour integrals as following 
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The 
∞= γi L L is a suitable contour of the Mellin-Barnes type which runs from γ−i∞ to γ+i∞ with γ ∈ R, the integers m,n, p, q satisfy 

the inequality 0 ≤ n ≤ pi, 1 ≤ m ≤ qi, ci > 0; i = 1,…,r. The parameters Aj, Bj, Aji, Bji are positive real numbers and aj, bj, aji, bji are 

complex numbers, such that the poles of ),Bb( jj ξ+Γ j = 1,2,…..,m separating from those of  ),ξ−−(Γ
jj

Aa1 j = 1,…,n. 

All the poles of the integrand (4) are supposed to be easy and empty products are considered as unity. The existence conditions
5
 for 

the Aleph function (4) are given below: 



Research Journal of Mathematical and Statistical Sciences ___________________________________________ ISSN 2320–6047 

Vol. 1(10), 1-4, November (2013) Res. J. Mathematical and Statistical Sci. 

International Science Congress Association   2 

r,1,..., k 
2

  | (z) arg0
kk

=;ψ
π

<|,>ψ           (6) 

01{ R and 
2

|(z) arg0
kkk

<+}Λψ
π

<|,≥ψ          (7) 

 

Where, 
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The generalized polynomial defined by Srivastava
6
 is as follows: 
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Where ni = 0, 1, 2… s1 m,...,m    s),(1,..., i =∀ are arbitrary positive integers and the coefficients ]α,;...;α,[
ss11

nn are 

arbitrary constants, real or complex. 

 

The Main Result: We derive the following result: 
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m is an arbitrary positive integer and the coefficient 

]α,;...;α,
ss11

n[n B are arbitrary constants, real or complex. 

 

Evaluation of (11): The integral in (11) can be derived by using of the Aleph function in terms of Mellin-Barnes contour integral 

given by (4) and the definition of a generalized polynomials given by (10), then interchanging the order of summation and 

integration, find the inner integral by using a result given by Chaurasia and Gupta
7
 and we get the desired result. 

 

Solution of the Problem posed: The solution of the problem to be established is 
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Which are valid under the same conditions used for (11) 

 

Derivation of (12): The solution of the problem can be written as (by using Churchill
8
)
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Where 0,1,2,...)(a =ττ are the coefficients in the Fourier Cosine Series for f(x) in the interval (0,µ), If t = 0, then by virtue of 

(1.3), we get 
























µ

π
,...,









µ

π









µ

π









µ

π ,...,

,...,

−λ−λ−δ s2k

s

12k

1
sm1m

sn1n

112

2

x
tan y

2

x
tan yS 

2

x
 cos

2

x
sin  









+=




















ℵ ∑

∞

= µ

πτ

µ

π
τ

τ

x
 cosaa

2

1

2

x
tan  z

1

0

2h

r;c,q,p

nm,

iii

        (14) 

 

Now multiplying (14) both sides by 
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Using (11) along with orthogonal property of the cosine functions, we get 
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Now by using (13) and (16), we get the desired solution in (12). 

 

Numerical Results: i. Taking Ci = 1, i = 1,…,r in (4), the Aleph function coincide with the I-function given by Saxena
9,10

.ii. Again 

for r = 1 and C1 = 1, taking S = 2 and ki → 0 in (11), we find the known result concluded by Chaurasia and Godika
11

. iii. Taking H -

function in place of Aleph-function in (11), we get the known result obtained by Chaurasia and Shekhawat
12

. 

 

Conclusion 

The result so established may be found useful in several interesting situation appearing in the literature on mathematical analysis, 

applied mathematics and mathematical physics. 
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