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Abstract  

The aim of the present paper is to investigate the unsteady flow of non-Newtonian Oldroyd model fluid of second order with 

transient pressure gradient through porous media in a long rectangular channel. The expression for velocity of the fluid is 

obtained in elegant form. The various deductions have also been discussed in detail. 

 

Introduction 

The study of physics of flow through porous media has become the basis of many scientific and engineering applications. This type 

of flow is of great importance in the petroleum engineering concerned with the movement of oil, gas and water through the 

reservoir of an oil or gas field to the hydrologist in the study of the migration of underground water and to the chemical engineer in 

the filtration process. 

 

Many research workers have paid their attention towards the application of non- Newtonian fluid flow through porous media in 

various types of channel, such as Oldroyd
1
, Gupta and Sharma

2
, Kapur, Bhatt and Sachetti

3
 , Singh, Shankar and Singh

4
, Gupta and 

Gupta
5
, Singh and Kumar

6
, Hayat, Asghar and Siddiqui

7
, Sharma and Pareek

8
, Kundu and Sengupta

9
, Hassianien

10
, Sengupta and 

Basak
11

, Pundhir and Pundhir
12

, Rehman and Alam Sarkar
13

, Agarwal and Agarwal
14

, Singh, Kumar and Sharma
15

, Kumar, Sharma 

and Singh
16

 and Kumar, Mishra and Singh
17

 etc. 

 

In the present paper, the unsteady laminar flow of non-Newtonian Oldroyd fluid of second order with transient pressure gradient 

through porous media in a long rectangular channel. The various deductions have also been discussed in detail. 

 

Basic theory and Equations of Motions  

For slow motion, the Rheological equations for second order non-Newtonian [Oldroyd
1
 model] fluid are: 
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where  =ijτ  The stress tensor , ='

ijτ The deviatoric stress tensor, =ije The rate of strain tensor, =p The pressure, =1λ The 

stress relaxation time parameter, =2λ The additional material constant, =1µ The strain rate retardation time parameter, =2µ  

The additional material constant, =ijδ The metric tensor, =µ The coefficient of viscosity, =iυ The velocity components 
 

Formulation of the Problem  

Let us consider the walls of rectangular channel to be the ax ±=  and by ±= . z-axis is taken towards the direction of motion of 

the fluid. Again let ),,(,0,0 tyxw  be the velocity components along x, y, z-directions respectively. A transient pressure gradient 

tpe ω−−  varying with time is applied to the non-Newtonian fluid. 
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Following the stress-strain relations (1)-(3), the equation for unsteady motion through porous media is given by   
2 2 2 2
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For the present problem, the boundary conditions are 
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Introducing the non-dimensional quantities 
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In equation (4) and dropping the stars, we get 
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The boundary conditions (5) reduces to 

a

b
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11,0 ≤≤−±== x
a

b
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Now we have to consider those type of situations of the flow which is transient in nature with respect to time and periodic in nature 

with respect to y. Subject to the nature of the boundary conditions (7) and (8) we choose the solution of (6) as  

myexWw t cos)( ω−=              (9) 

 

The boundary conditions (7) and (8) corresponding to (9) are 
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The boundary condition (11) will be satisfied if  
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We may construct the solution as the sum of all possible solutions for each value of n of the form 

myexWw
n

t cos)(
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Putting the value of 0, >−=
∂

∂ − ωωt
Pe

z

p
in (6) we get 
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The general solution of (15) is 
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Using boundary conditions (10), we get 
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Hence the velocity of Oldroyd fluid is given by 

( )
( ) y

b

an
e

a

Q

x
a

Q

Qn

P
tyxw

t

n

n

2

)12(
cos

cosh

cosh

1
1)12(

14)1(
),,(

0
22

21

2

21 π

ωµωµπ

ωλωλ ω +

















−
+−+

+−−
= −

∞

=

∑              (18) 

Deductions 

Case I: If we put 0,0 22 == µλ  in equation (18) then we obtain all expressions for first order Oldroyd fluid of Singh, Kumar 

and Sharma
15

. 

Case II: If we take 00,0 212 === µµλ and in equation (18) then we get velocity expression for Maxwell visco-elastic 

fluid. 

Case III: If we take 00,0,0 2121 ==== µµλλ and  in equation (18) then we get the velocity expression for purely 

viscous fluid. 

Case IV: If porous media is withdrawn i.e. ∞→K  in equation (18), we obtain all expressions of Kundu and Sengupta
9
. 
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Conclusion 

The nature of the porous medium is to reduce the velocity of the fluid therefore the presence of the porous medium in the 

rectangular channel will definitely reduced the velocity of non-Newtonian fluid and evidently velocity of the fluid in deductions 

case I, case II, case III and case IV will be slower than the velocity of the fluid obtained Kundu and Senguta
9
. 
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