Res. J. Mathematical & Statistical Sci.

Selection of Mixed Sampling Plan with QSS - $3(n;c_N,c_T)$ Plan as Attribute Plan Indexed Through MAPD and IQL

R. Sampath Kumar¹, Indra M.² and Radhakrishnan R.³

Department of Statistics, Government Arts College, Coimbatore-641018, Tamil Nadu, INDIA
Department of Statistics, Muthayammal College of Arts and Science, Rasipuram-637408, Tamil Nadu, INDIA
Department of Statistics, PSG College of Arts and Science, Coimbatore – 641014, Tamil Nadu, INDIA

Available online at: www.isca.in

Received 3rd November 2012, revised 28th December 2012, accepted 2nd January 2013

Abstract

This paper presents the procedure for the construction and selection of the mixed sampling plan using MAPD as a quality standard with the QSS-3(n; c_{N,C_T}) plan as attribute plan. The plans indexed through MAPD and IQL are constructed and compared for their efficiency. Tables are constructed for easy selection of the plan.

Keywords: Indifference quality level, maximum allowable percent defective, operating characteristic, tangent intercept.

Introduction

Mixed sampling plans consist of two stages of rather different nature. During the first stage the given lot is considered as a sample from the respective production process and a criterion by variables is used to check process quality. If process quality is judged to be sufficiently good, the lot is accepted. Otherwise the second stage of the sampling plan is entered and lot quality is checked directly by means of an attribute sampling plan.

There are two types of mixed sampling plans called independent and dependent plans. If the first stage sample results are not utilized in the second stage, the plan is said to be independent otherwise dependent. The principal advantage of a mixed sampling plan over pure attribute sampling plans is a reduction in sample size for a similar amount of protection.

The second stage attribute inspection becomes more important to discriminate the lot if the first stage variable inspection fails to accept the lot. If rejection occurs during the normal inspection, tightened inspection is recommended in the mixed system and vice versa in the second stage. Hence Quick Switching System is imposed in the second stage to sharpen the sampling situation and to insist the producer to manufacture goods within the Acceptable Quality Level. Dodge¹ proposed a sampling system called a 'Quick Switching System' (QSS) consisting of pairs of normal and tightened plans.

Schilling² proposed a method for determining the operating characteristics of mixed variables – attributes sampling plans, single sided specification and standard deviation known using the normal approximation. Devaarul³, Sampath Kumar⁴, Sampath Kumar, et.al⁵⁻¹¹ have made contributions to mixed sampling plans for independent case. QSSs were originally proposed by Dodge¹ and investigated by Romboski¹² and Govindaraju¹³. Dodge¹ proposed a new sampling system consisting of pairs of normal and tightened plans. QSS developed with attributes by Romboski¹² is a reduction in the sample size required to achieve approximately the same operating characteristic curve.

In this paper, using the operating procedure of mixed sampling plan with QSS-3(n; c_N , c_T) plan as attribute plan, tables are constructed for the mixed sampling plan indexed through (i) MAPD (ii) IQL (indifference quality level). The plan indexed through MAPD is compared with the plan indexed through IQL. Suitable suggestions are also provided for future research.

Schilling² has given the following procedure for the independent mixed sampling plan with Upper specification limit (U) and known standard deviation (σ). i. Determine the parameters of the mixed sampling plan n_1 , n_2 , k, c_N and c_T . ii. Take a random sample of size n_1 from the lot. iii. If a sample average $\overline{X} \leq A = U - k\sigma$, accept the lot. iv. If a sample average $\overline{X} > A = U - k\sigma$, go to step 1.

Step 1: From a lot, take a random sample of size n_2 at the normal level. Count the number of defectives 'd'. i. If $d \le c_N$, accept the lot and repeat step 1. ii. If $d > c_N$, reject the lot and go to step 2.

Step 2: From the next lot, take a random sample of size n_2 at the tightened level. Count the number of Defectives'd'. i. If $d \le c_T$, accept the lot and continue inspection until three lots in succession are accepted. If so go to step-1 otherwise repeat step-2. ii. If $d > c_T$, reject the lot and repeat step 2 for the next lot.

Construction of Mixed Sampling Plan having QSS-3(n;c_N,c_T) as attribute plan

The operation of mixed sampling plans can properly be assessed by the OC curve for given values of the fraction defective. The development of mixed sampling plans and the subsequent discussions are limited only to the upper specification limit 'U'. A parallel discussion can be made for lower specification limits.

The procedure for the construction of mixed sampling plans is provided by Schilling² for a given 'n₁' and a point 'p_j' on the OC curve is given below. i. Assume that the mixed sampling plan is independent, ii. Split the probability of acceptance (β_j) determining the probability of acceptance that will be assigned to the first stage. Let it be β_j '. iii. Decide the sample size n₁ (for variable sampling plan) to be used. iv. Calculate the acceptance limit for the variable sampling plan as A=U-k σ = U - [z (p_j)+ {z (β_i ')/ $\sqrt{n_1}$ }] σ ,

Where U is the upper specification limit and z (t) is the standard normal variate corresponding to t' such that t

$$= \int_{z(t)}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

i. Determine the sample average \overline{X} . If a sample average $\overline{X} > A = U - k \sigma$, take a second stage sample of size 'n₂' using attribute sampling plan. ii. Split the probability of acceptance β_j as β_j ' and β_j ", such that $\beta_j = \beta_j + (1 - \beta_j) \beta_j$ ". Fix the value of β_j '. iii. Now determine β_j ", the probability of acceptance assigned to the attributes plan associated with the second stage sample as β_j " = $(\beta_j - \beta_j)$ / $(1 - \beta_j)$. iv. Determine the appropriate second stage sample of size 'n₂' from Pa $(p) = \beta_j$ " for $p = p_j$.

Using the above procedure tables can be constructed to facilitate easy selection of mixed sampling plan with QSS-3(n; c_N , c_T) plan as attribute plan indexed through MAPD and IQL.

According to Soundararajan and Arumainayagam [14], the operating characteristic function of QSS-3 is given below.

$$P_{a}(p) = \frac{a b^{3} + b (1 - a) (1 + b + b^{2})}{b^{3} + (1 - a) (1 + b + b^{2})}$$
(1)

Where
$$a = \sum_{i=0}^{c_N} \frac{e^{-n_2 p} (n_2 p)^i}{i!}$$
 (2)

$$b = \sum_{j=0}^{c_T} \frac{e^{-n_2 p} (n_2 p)^j}{j!}$$
 (3)

(for acceptance number tightening)

Construction of the plans indexed through MAPD

MAPD (p_{*}), introduced by Mayer¹⁵ and further studied by Soundararajan¹⁶ is the quality level corresponding to the inflection point of the OC curve. The degree of sharpness of inspection about this quality level 'p_{*}' is measured by 'p_t', the point at which the tangent to the OC curve at the inflection point cuts the proportion defective axis. For designing, Soundararajan¹⁶ proposed a selection procedure for mixed sampling plan indexed with MAPD and $R = \frac{p_t}{r}$.

 p_*

Using the probability mass function of QSS-3, given in expression (1), the inflection point (p*) is obtained by using $\frac{d^2 p_a (p)}{dp^2}$ =

0 and $\frac{d^{-3}p_a(p)}{dp^{-3}} \neq 0$. The relative slope of the OC curve $h_* = \left[\frac{-p}{p_a(p)}\right] \frac{dp_a(p)}{dp}$ at $p = p_*$. The inflection tangent of the OC

curve cuts the 'p' axis at $p_t = p_* + (p_* / h_*)$. The values of n_2p_* , h_* , n_2p_t and $R = p_t/p_*$ are calculated for different values of 'c_N' and 'c_T' for β_* ' = 0.25 using c++ program and presented in table 1.

Selection of the Plan: For the given values of p_* and p_t , the ratio $R = \frac{p_t}{p_*}$ is found and the nearest value of R is located in Table

1. The corresponding value of c_N , c_T and np_* values are noted and the value of n_2 is obtained using $n_2 = \frac{n_2 p_*}{p_*}$.

Example: Given $p_* = 0.013$, $p_t = 0.024$ and $\beta_*' = 0.25$, the ratio $R = \frac{p_t}{p_*} = 1.8462$. In table 1, the nearest R value is 1.8480 which

is corresponding to $c_N = 2$ and $c_T = 1$. The value of $n_2 p_* = 1.5917$ is found and hence the value of n_2 is determined as $n_2 = \frac{n_2 p_*}{p_*} = \frac{n_2 p_*}{p_*}$

 $\frac{1.5917}{0.013}$ = 122. Thus n_2 = 122, c_N = 2 and c_T = 1 are the parameters selected for the mixed sampling plan having QSS-3(n; c_N , c_T) as attribute plan using Poisson Distribution as a baseline distribution, for the given values of p_* = 0.013 and p_t = 0.024.

Table-1

Various characteristics of the mixed sampling plan when β_* '= β_0 '= 0.25 and β_0 = 0.50

	various characteristics of the mixed sampling plan when $p_* = p_0 = 0.25$ and $p_0 = 0.50$						
$\mathbf{c}_{\mathbf{N}}$	$\mathbf{c}_{\mathbf{T}}$	n_2p_0	β*''	n_2p_*	h*	n_2p_t	$\mathbf{R} = \mathbf{p_t}/\mathbf{p_*}$
3	0	1.4546	0.8529	0.8933	0.8100	1.9961	2.2345
1	0	1.1681	0.6429	0.6531	0.8478	1.4234	2.1795
10	0	2.9901	0.9461	2.3991	0.8604	5.1875	2.1623
7	1	3.1991	0.9149	2.3648	0.9023	4.9857	2.1083
8	1	3.4312	0.9129	2.6498	1.0573	5.1560	1.9458
2	1	2.3496	0.5985	1.5917	1.1792	2.9415	1.8480
4	0	1.6475	0.8299	1.1632	1.1969	2.1350	1.8355
2	2	3.4336	0.4736	2.7826	1.4074	4.7597	1.7105
11	1	4.1592	0.9099	3.4722	1.5080	5.7747	1.6631
3	3	4.5538	0.4727	3.8038	1.6450	6.1161	1.6079
3	1	1.7680	0.5616	1.8971	1.7680	2.9701	1.5656
5	1	2.7730	0.7608	2.1016	1.7804	3.2820	1.5617
4	7	8.8543	0.3944	8.3206	2.4719	11.6867	1.4046
5	2	3.7062	0.5288	3.1585	2.6172	4.3653	1.3821
6	4	5.7875	0.4211	5.3347	2.7266	7.2912	1.3667
6	3	4.8051	0.5269	4.1353	2.7602	5.6335	1.3623
7	6	7.8892	0.3815	7.5461	2.9134	10.1362	1.3432
9	2	4.5085	0.7500	3.8638	3.1163	5.1037	1.3209
8	2	4.2781	0.7072	3.6461	3.1535	4.8023	1.3171
7	4	5.8951	0.3892	5.6307	3.3152	7.3291	1.3016
8	6	7.9596	0.3480	7.8592	3.3664	10.1938	1.2971
7	3	4.9557	0.5080	4.4278	3.4659	5.7053	1.2885
9	1	3.6701	0.7336	3.2238	3.6504	4.1069	1.2739
8	9	11.0336	0.3007	11.3557	3.7147	14.4127	1.2692
10	2	4.7491	0.6996	4.2259	4.1932	5.2337	1.2385
10	6	8.1801	0.2759	8.5426	4.4074	10.4808	1.2269
9	4	6.2058	0.3241	6.2424	4.7705	7.5509	1.2096
9	3	5.3435	0.4709	5.0170	5.1730	5.9868	1.1933
10	4	6.4029	0.2932	6.5497	5.6356	7.7119	1.1774
11	4	6.6208	0.2640	6.8569	6.5919	7.8971	1.1517

Construction of Mixed Sampling Plan indexed through IQL

The procedure given in section 5 is used for constructing the mixed sampling plan indexed through IQL (p_0) . By assuming the probability of acceptance of the lot be $\beta_0 = 0.50$ and $\beta_0' = 0.25$, the n_2p_0 values are calculated for different values of 'c_N' and 'c_T' using c++ program and is presented in table 1.

Selection of the Plan: Table 1 is used to construct the plans when IQL (p_0) , ' c_N ' and ' c_T ' are given. For any given values of p_0 , ' c_N ' and ' c_T ' one can determine n_2 value using $n_2 = \frac{n_2 p_0}{n_2 n_2}$.

Example: Given
$$p_1 = 0.04$$
, $c_N = 5$ and $c_T = 2$ and $\beta_0' = 0.25$. Using Table 1, find $n_2 = \frac{n_2 p_0}{p_0} = \frac{3.7062}{0.04} = 93$. Thus $n_2 = 93$, $c_N = 5$

and $c_T = 2$ are the parameters selected for the mixed sampling plan having QSS-3(n; c_N , c_T) as attribute plan for a specified $p_1 = 0.04$, $c_N = 5$ and $c_T = 2$.

Comparison of Mixed Sampling Plan indexed through MAPD and IQL: In this section mixed sampling plan indexed through MAPD is compared with mixed sampling plan indexed through IQL by fixing the parameters c_N , c_T and βi .

For the specified values of p_* and p_t with the assumption β_* ' = 0.25, one can find the values of c_N , c_T and n_2 indexed through MAPD. By fixing the values of c_N and c_T , find the value of p_1 by equating Pa $(p) = \beta_0 = 0.50$. Using β_0 ' = 0.25, c_N and c_T one can find the value of n_2 using $n_2 = \frac{n_2 p_0}{n_2}$ from table 1. For different combinations of p_* , p_t , c_N and c_T the values of n_2 (indexed through MAPD)

and n₂ (indexed through IQL) are calculated and presented in table 2.

Table-2 Comparison of plans indexed through MAPD and IQL

n	p _t	c_{N}	c_{T}	Indexed Through MAPD	Indexed throgh IQL		
\mathbf{p}_*				$\mathbf{n_2}$	\mathbf{n}_2		
0.033*	0.038	11	4	208	221		
0.054	0.070	8	6	146	167		
0.058	0.079	6	3	71	81		
0.070	0.089	9	1	46	49		

^{*}OC Curve is drawn

Construction of OC curve

The OC curves for the plans $n_2 = 208$, $c_N = 11$, $c_{T=4}$ (indexed through MAPD) and $n_2 = 221$, $c_N = 11$, $c_T = 4$ (indexed through IQL) based on the different values of n_2p_0 and p_a (p) are presented in figure 1.

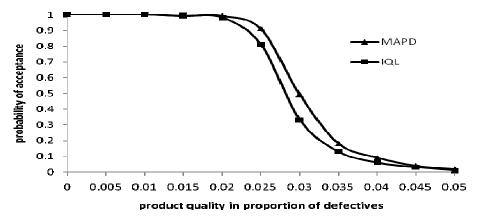


Figure-1 OC Curves for QSS-2 (208; 11,4) and (211; 11,4)

Conclusion

In this paper, using the operating procedure of mixed sampling plan with QSS-3 (n;c_N,c_T) as attribute plan, tables are constructed for the mixed sampling plan indexed through the parameters MAPD and IQL by taking Poisson distribution as a baseline distribution. It is concluded from the study that the second stage sample size required for QSS-3(n;c_N,c_T) plan indexed through MAPD is less than that of the second stage sample size of the QSS-3(n;c_N,c_T) plan indexed through IQL. Examples are provided for a specified value of $\beta_j' = 0.25$. If the floor engineers know the levels of MAPD or IQL, they can have their sampling plans on the floor itself by referring to the tables. This provides the flexibility to the floor engineers in deciding their sampling plans. Various plans can also be constructed to make the system user friendly by changing the first stage probabilities (β_* ', β_0 ') and can also be compared for their efficiency.

References

- 1. Dodge H.F., A new dual system of acceptance sampling, *Technical Report NO.16* (New Brunswick, NJ, The Statistics centre, Rutgers State University), (1967)
- 2. Schilling E.G., A General method for determining the operating characteristics of Mixed Variables Attributes Sampling Plans single side specifications, S.D. known, PhD Disseration –Rutgers- The State University, New Brunswick, New Jersy (1967)
- 3. Devaarul S., Certain Studies Relating to Mixed Sampling Plans and Reliability Based Sampling Plans, Ph.D., Dissertation, Bharathiar University, Tamil Nadu, India (2003)
- **4.** Sampath Kumar R., Construction and Selection of Mixed Variables-Attributes Sampling Plan, Ph.D Disseration, Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, India (2007)
- 5. Sampath Kumar R., Indra M. and Radhakrishnan R., Selection of mixed sampling plans with QSS-1(n;c_N,c_T) plan as attribute plan indexed through MAPD and AQL, *Indian Journal of Science and Technology*, **5(2)**, 2096-2099 **(2012a)**
- **6.** Sampath Kumar R., Indra M. and Radhakrishnan R., Selection of mixed sampling plan with QSS-1(n,mn;c₀) plan as attribute plan indexed through MAPD and IQL, *International Journal of Emerging Trends in Engineering and Development.*,**3(2)**, 33-39 (**2012b**)
- 7. Sampath Kumar, R., Indra, M., and Radhakrishnan, R., Selection of mixed sampling plan with TNT-(n;c₁,c₂) plan as attribute plan indexed through MAPD and AQL, *International Journal of Engineering Research and Applications.*, **2(3)**, 1326-1332 (**2012c**)
- 8. Sampath Kumar R., Indra M. and Radhakrishnan R., Selection of mixed sampling with TNT-(n;c₁,c₂) plan as attribute plan indexed through MAPD and IQL, *International Journal of industrial and Engineering Technology.*, **4(3)**, 157-165 (**2012d**)
- 9. Sampath Kumar R., Kiruthika R. and Radhakrishnan R., Construction of mixed sampling plans indexed through MAPD and LQL with Double sampling plan as attribute plan using Weighted Poisson distribution, *International Journal of Electronics and Communication Engineering*, 5(3), 39-47 (2012e)
- **10.** Sampath Kumar R., Sumithra S. and Radhakrishnan R., Selection of mixed sampling plan with chsp-1 plan as attribute plan indexed through MAPD and MAAOQ, *International Journal of Applied Computational Science and Mathematics*, **1(1)**, 37-44 (**2012f**)
- 11. Sampath Kumar R., Vijayakumar R. and Radhakrishnan R., Selection of mixed sampling plan with conditional Double sampling plan as attribute plan indexed through MAPD and LQL using IRPD, *International Journal of Computational Science Engineering and Research*, 2(2), 306-313 (2012g)
- 12. Romboski L.D., An Investigation of Quick Switching Acceptance Sampling System, *Ph.D Disseration* (New Brunswick, NJ, Rutgers State University) (1969)
- 13. Govindaraju K., Procedures and Tables of the Selection of Zero Acceptance Number Quick Switching System for Compliance Testing, Communication in Statistics-Simulation and Computation, 20(1), 157-172 (1991)
- **14.** Soundararajan, V. and Arumainayagam., S.D., Modifications of Quick Switching Systems with special reference to crossover point of their composite OC curves, *Research Report No.*25, Department of Statistics, Bharathiar University, Coimbatore (**1988**)
- **15.** Mayer P.L., A Note on Sum of Poisson Probabilities and An application, *Annals of Institute of Statistical Mathematics*, **19**, 537-542 (**1967**)
- **16.** Soundarajan V., Maximum Allowable Percent Defective (MAPD) Single Sampling Inspection by Attribute Plan, *Journal of Quality Technology*, **7(4)**, 173-177 (**1975**)