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Abstract 

This paper examines the microscopy of cubic crystalline systems from Navier equation in perfect media. We researched 

potential solutions in terms of scalar and vector gauge fields from one Helmholtz theorem. To near a sign, it appeared

gauge relations for both field kinds. Vector field description is similar to Maxwell electromagnetic theory such as the 

translation is immediat to describe fields of electrons and holes. The elastic phenomena are then relatable to the 

electromagnetic ones, provided that the previous theory be completed. When examining different ways of gauge and field 

invariances, we found that: i. local fermions describe plane and central motions leading to conservation laws of energy and 

kinetic momentum. ii. These describe long

radiations. iii. Linked electrons define four kinds of crystalline magnetism even in non

crystals, we determined the expressions of the

couplings corresponding to four systems, i.e. the three primitive (cP, bcc, fcc) and another including all non

systems. v. The two firsts are characterized by zero elect

electric fields which are local and transverse. 

theory then describes elastic and electromagnetic phenomena
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Introduction 

The material characterization implies the description of 
particular behaviors or characteristics of these which make them 
different one from another. Here, this regards the distinction of 
cubic systems from their elastic field characteristics implying 
furthermore electronic charges. The wave propagation in media 
relies on the crystalline symmetries defining the elasticity or 
stiffness tensor. The case of homogeneous and isotropic media 
(so-called perfect) relies on cubic systems. In this case, there are 
only two propagating modes for each system. As with any other 
system, one can say that the modes are degenerated relatively to 
numerous systems involved. One can ask about the possibilities 
of breaking such a degenerency in wave propagation. The 
solution should come from the determination of wave 
microscopy hidden by the common symmetries. This is such as 
each system should correspond to a different field expression; 
otherwise, each should be characterized by a specific gauge or a 
set of gauges. 
 
Gauge theories constitute one of the most important field of 
research in theoretical physics. These first began in modern 
physics and are since used in the study of material properties
In linear elasticity, one often uses the Lagrangian formalism 
more general than the Newtonian one3,4. In both cases, one 
obtains however wave equations which constitute the common 
point. But as far as we are aware, a theory unifying all fields is 
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This paper examines the microscopy of cubic crystalline systems from Navier equation in perfect media. We researched 

potential solutions in terms of scalar and vector gauge fields from one Helmholtz theorem. To near a sign, it appeared

elations for both field kinds. Vector field description is similar to Maxwell electromagnetic theory such as the 

translation is immediat to describe fields of electrons and holes. The elastic phenomena are then relatable to the 

ed that the previous theory be completed. When examining different ways of gauge and field 

invariances, we found that: i. local fermions describe plane and central motions leading to conservation laws of energy and 

kinetic momentum. ii. These describe longitudinal spin waves originated by the free electrons of lattice and explain thermal 

radiations. iii. Linked electrons define four kinds of crystalline magnetism even in non-perfect media… To characterize cubic 

crystals, we determined the expressions of their scalar and vector fields at interfaces. iv. We found four different gauge 

couplings corresponding to four systems, i.e. the three primitive (cP, bcc, fcc) and another including all non

systems. v. The two firsts are characterized by zero electric fields and transverse stationary waves; the two lasts by non

electric fields which are local and transverse. vi. There is no rotating charge at interfaces for the four systems. This field 

theory then describes elastic and electromagnetic phenomena in the same way and at quantum scale.

Crystal magnetism, cubic system, elastic characterization, navier equation, spin wave, thermal radiation.

The material characterization implies the description of 
behaviors or characteristics of these which make them 

different one from another. Here, this regards the distinction of 
cubic systems from their elastic field characteristics implying 
furthermore electronic charges. The wave propagation in media 

the crystalline symmetries defining the elasticity or 
stiffness tensor. The case of homogeneous and isotropic media 

called perfect) relies on cubic systems. In this case, there are 
only two propagating modes for each system. As with any other 

ne can say that the modes are degenerated relatively to 
numerous systems involved. One can ask about the possibilities 
of breaking such a degenerency in wave propagation. The 
solution should come from the determination of wave 

on symmetries. This is such as 
each system should correspond to a different field expression; 
otherwise, each should be characterized by a specific gauge or a 

Gauge theories constitute one of the most important field of 
cal physics. These first began in modern 

physics and are since used in the study of material properties1,2. 
In linear elasticity, one often uses the Lagrangian formalism 

. In both cases, one 
ons which constitute the common 

point. But as far as we are aware, a theory unifying all fields is 

not yet officially known in physics. Hence, in the line of our 
previous works concerning vacuum
export the theory originality towar
which are comparable to elastic behaviors of vacuum. This 
initiated the field unification from wave field equations and 
reveals the existence of four fundamental fields. One can then 
expect to identify four main cubic systems. 
interested to explore the motion equation of cells in perfect 
media in order to characterize the related material systems. To 
our knowledge, this is the first study of the kind.
 
Therefore, after a brief recall on elastic bases yielding N
equation in these media, we will search to solve this in the case 
of potential forces acting on the medium cells. This implies 
determining the gauges and related fields. Then we will examine 
these invariances before characterization from specific 
conditions. To end, we will discuss the theory relevance via 
some phenomena relative to the metallic link in crystals.
 
Materials and methods 

We summarize here linear elasticity bases leading to the motion 
general equation in a perfect medium

and isotropic. The first adjective remains valid while boundary 
conditions are not required. The condition defining isotropic and 
non-homogeneous materials will naturally appears. We will 
consequently solve that equation by applying one Helmhol
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not yet officially known in physics. Hence, in the line of our 
previous works concerning vacuum5,6, we found opportune to 
export the theory originality toward cubic crystalline systems, 
which are comparable to elastic behaviors of vacuum. This 
initiated the field unification from wave field equations and 
reveals the existence of four fundamental fields. One can then 
expect to identify four main cubic systems. Here, we are then 
interested to explore the motion equation of cells in perfect 
media in order to characterize the related material systems. To 
our knowledge, this is the first study of the kind. 

Therefore, after a brief recall on elastic bases yielding Navier 
equation in these media, we will search to solve this in the case 
of potential forces acting on the medium cells. This implies 
determining the gauges and related fields. Then we will examine 
these invariances before characterization from specific 

ditions. To end, we will discuss the theory relevance via 
some phenomena relative to the metallic link in crystals. 

We summarize here linear elasticity bases leading to the motion 
perfect medium, i.e. infinite, homogeneous 

and isotropic. The first adjective remains valid while boundary 
conditions are not required. The condition defining isotropic and 

homogeneous materials will naturally appears. We will 
consequently solve that equation by applying one Helmholtz 
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theorem. As the next depends on the kind of inertial forces, we 
consider furthermore the case where these are potential, i.e. 
keep the host medium in thermodynamic equilibrium. Then will 
follow the expression examinations depending on gauge fields 
appearing from that theorem. 
 
Waves propagation essential in linear elasticity One 
considers the elastic disturbance of a perfect medium. One 
classically describes the wave propagation by considering the 
set motion of oscillating parallelepipedic cells. If ��� is the 
displacement vector of one of these, its motion equation from 
Newton fundamental principle in rectangular coordinates (������	), is given in Eisnteinian notation by the relation 
 � �
���
� = ������� + ��                (1) 

 
where � is the medium density; ��� is the stress tensor and �� 
represents the component-i of inertial force density on a cell. 
This stress tensor is related to the strain tensor (���) through the 
generalized Hooke law, i.e. with the same notation ��� =����� . ���; where (�����) is the elasticity or stiffness tensor. One 
defines in linear elasticity ��� by the expression  
 ��� = �� (�� ��! + ��!�� )               (2) 

 
After substitutions, the initial equation writes under the form  
 � �
����
 = ����� �
� ����! + ��               (3) 

 
Owing to the symmetry (��� = ���), the 81 elements of the 
elasticity tensor reduce to 21 independent. In isotropic media, 
one shows that ����� = "#��#�� + $(#��#�� + #��#��); where " 
and $ are Lamé constants (" > $). Substituting this in the 
previous equation, then doing some classical developments and 
transformations, one gets to one form of Navier equation4:  
 �
������
 = −'��(�� × ((�� × ���) + '��(��((�����) + *�+              (4) 

 
where '� and '� are the respective celerities of the transverse (T) 
and the longitudinal (L) waves such as  
 c- = .µ

ρ
;     c0 = .λ1�µ

ρ
                (5) 

 
That wave equation lets seeing two propagating modes whatever 
are the inertial forces. This solution is generally treated in 
particular cases. The general solution is unknown and represents 
a great challenge. We are going to solve this in the particular 
(but useful) case of potential inertial forces. 
 
Helmholtz’s theorem application According to one Helmholtz 
theorem, any field vanishing to infinite is expressable as a sum 

of both rotational and gradient terms. Applying this to the 
displacement field and taking into account both kinds of waves, 
we can write  

 ��� = (�� × 2��345����6
− �7! (��8�39495����!

                (6) 

 
such as both displacements are orthogonal (���� . ���� = 0). The 
quantities 8� and 2�� are respectively the scalar and vector 
potentials originating the displacement vector. Their dimensions 
are such as ;8�< = =	>?� and ;2�< = =�. This definition suits 
with the existence of 4-potentials (2�� , A8�/'�) and (2�� , A8�/'�) 
such as 8� is the flow through the surface 2��. Equivalently, 8� is 
the flow through the surface 2��.. The wave equation then turns 
into 
 �C����� = �('��D���� − '��D����) + ��                (7) 
 
or relatively to the potentials 
 '��(�� × ⧠�2�� − '��(��⧠� F!7! = − *�+               (8) 

 
where both d’Alembertian operators are defined by  
 ⧠G = D − �7H
 C�� with   C� = ��� ;  I = J, K              (9) 

 
Considering now the case of potential inertial forces, one can 
write by comparison  
 �� = (�� × L��� − �7! (��M�              (10) 

 
such as its substitution leads to the wave equations 
 ⧠�2�� = − �76


N����6+ ;     ⧠�8� = − �7!

O!+              (11) 

 
Thence, it becomes necessary to complete these with those of 
potentials 8� and 2��. The next subsection shows the related 
procedure giving birth to the excepted concept of gauge-field. 
 
Gauge and field definitions To establish the missing equations, 
the following procedure is necessary knowing that the nabla 
operator allows transforming a vector equation into a scalar one 
or conversely. Then one multiplies by ('�PK) and integrates with 
respect to time. One gets to the complementary wave equations 
provided that the mediations below be satisfy for each mode. 
 ⧠�8� = − �76


O6+ ;     ⧠�2�� = − �7!

N����!+              (12) 

 
Case of the T mode: the potentials satisfy the gauge relations 
below.  
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(��2�� ± �76
 C�8� = 0              (13) 

 
and the corresponding vector fields must be defined by  
 R��± = −(��8� ∓ C�2��;     T�� = (�� × 2��     (≡ ����)            (14) 
 
with ;R±< = =�. >?� and ;T< = =. Thence the wave equations 
can otherwise write 
 

V⧠�2�� = −(�� × T�� ± �76
 C�R��±⧠�8� = −(��R��±
W             (15) 

 

These are similar to the classical Maxwell equations of 
electrodynamics. One can recognize the electric and magnetic 
like field definitions; Lorentz gauge as well (sign +) in the 
relations (13). One can therefore establish complete analogies 
with the related theory. However, the complementary 
expressions of gauge (sign -) and field (R��?) are unusual. These 
are relatable to elastic charge defaults of any cell. In 
electromagnetism, these represent the so-called holes in 
complement to free electrons define by the sign (+). Defining, 
the four charge-current should achieve a complete analogy 
between tranverse-elastic and electromagnetic fields.  
 
Case of the L mode: the potentials must also satisfy two gauge 
relations expressible into  
 (��8� ± C�2�� = 0��               (16) 
 
That is, the vector potential is a gradient and must be orthogonal 
to the transverse one 2��. The corresponding scalar fields are 
defined by  X± = ±(��2�� + �7!
 C�8�               (17) 

 
with ;X±< = = such as the wave equations write  Y⧠�2�� = ±(��X±⧠�8� = −C�X± W               (18) 

 
This system expresses the scalar field of the previous vector 
field. One can also establish adequate analogies with Maxwell 
theory through mass densities. These having to show that the 
scalar fields originate masses. 
 
Remark: each displacement component corresponds to a gauge 
field describing fermions and antifermions ½ as shown in our 
first cited article5. The simultaneous existence of both 
components constitutes phonons assuming the field propagation 
or virtual bosons in field theory language. 
 
Gauge and field invariances The gauge relations directly 
define conservation laws when considering them directly and 
using charge-current representations in the equations second 
members; the d’alembertian of each yielding to charge 

conservations. Here, we show the existence of other laws and 
related phenomena. For the T mode, one can distinguish two 
invariance orders. 
 

Conservation laws in T mode Both gauges are invariant in the 

following substitutions 2�� ↦ 2�� + ���[(K); 8� ↦ 8� + ��\(]�). 
From the definitions (14) these let T�� invariant. For R��±  also be 
invariant, the arbitrary functions must satisfy the relation  
 (����\ ± C����[ = 0��              (19) 
 
Owing to the meaning of 4-potentials, both relations express the 
areolar velocity conservation whose associated periodicity 
defines the wave pulsation. Each cell then describes locally a 
central plane motion around the gradient direction. Naturally, 
the cell spatial position depends on time. The gradient direction 

of ��-^(K) makes this orthoganal to the initial vector potential. 
That is, the gauges of T fields are invariant to near a gradient 
potential expliciting plane motion existence. Moreover, that law 
implies those of kinetic momentum and mechanical energy as 
known. 
 
Thermal-like radiations On the other hand, if we consider first 
the invariances of both vector fields (14) with the substitutions 2�� ↦ 2�� + ∇����� and 8� ↦ 8� ∓ ∂���, provided that 2�� . ∇����� = 0, 
the gauges (13) are invariant if 
 ⧠��� = 0                       (20) 
 
This is interpretable as relative to the additional 4-potential (∇����� , ∓A ∂���/'�) such as ��-^ = ∇����� and ��\ = ∓ ∂���. The 
existence of central motions at the cell scale suggests 
considering quantum solutions. One gets these from 
Schrödinger equation of a free particle. This is rather a fermion 
accordingly to 4-potential meanings. This has no mass in 
addition since that equation corresponds to a zero scalar gauge 
field according to the relations (16) and (18). In fact, many 
fermions having the same celerity '� respect that equation of 
harmonic waves. Hence, if  Ra = ℏca is the n-harmonic energy 
and da = ℏea is its impulse, one has '� = Ra/da. Moreover, if 
L is a free fermion orbital angular momentum having the spin 
operator S, its global angular momentum reads J=L+S. Around 
a cell-j, any fermion at n-energy level and kinetic momentum ℓ, 
is describable in spherical coordinates (]� , f�, M�) under both 
alternative forms below, taking count of both spin orientations7. 
 

g��aℓ 1h]�� , Ki
��aℓ 1h]�� , Kij = kaℓ h]�i

lm
noaℓ1 ∑ q

ℓ

r1s
hf� , M�iℓ?s
rt?ℓ?s
oaℓ? ∑ q
ℓ

r?s
hf� , M�iℓ1s
rt?ℓ1s
 uv
w �∓�xy�      (21) 

 
where oaℓ1 and oaℓ? are integration constants, ka�  are the radial 

functions and q�r±s
 are the spherical harmonic functions. Note 
that the limit value zr[� of z relies on the medium 
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thermodynamic equilibrium such as one can finally write ℓ =0, … , zr[� − 1; the fundamental frequency c}depending on the 
corresponding temperature. Hence, this situation corresponds to 
thermal radiations. In the simplest case, one can write ca =zc}; otherwise, the ratio ca/c} is not necessarily integral by 
definition. 
 
Weak-like electronic field Note that relatively to the previous 
case, the substitutions 2�� ↦ 2�� + ∇�����′ and 8� ↦ 8� ± ∂���′ lead 
to another result of gauge invariance. One obtains instead the 
local equation 
 ⧠~���′ = 0 with ⧠~� = D + �
76
 ��
             (22) 

 
whose quantized solutions are similar to the preceding for 
imaginary time (i.e. K ↦ ∓AK). Both solutions being 
simultanously possible, one has to interpret these as related to 
transverse fermions endowed with local and long range fields. 
This is certainly the case of cells free electrons; these expressing 
the weak fundamental field. Thus, it seems obvious that the T 
mode definitions of cells are finally invariant to near electronic 
fields. 
 
Conservation laws in L mode Both previous invariance orders 
are also considerable. The two gauges are invariant in the 

following substitutions 2�� ↦ 2�� + ���[(]�);  8� ↦ 8� + ��\(K). In 
addition, the scalar fields (17) are invariant if the arbitrary 
functions respect the relations  
 (�����[ ± �7!
 C���\ = 0              (23) 

 
Owing to the meaning of 4-potentials, this would express a 
length conservation. Mutiplying however this equation by '� 
shows the conservation of areolar velocity projection in the 
gradient direction. Since space and time are dependent 
parameters as before, this allows connecting those arbitrary 
functions to the preceding ones (19) by taking the gradient of 

that equation. One obtains then ��\ ∝ '�∇������[ and ���[ ∝ (����\/'�. 
That is, both invariance orders express the same conservation 
laws in the plane perpendicular to the radial direction.  
 
Other thermal-like radiations On the other side, if the scalar 
fields (17) are first considered invariant for the substitutions 2�� ↦ 2�� ∓ ∂���� and 8� ↦ 8� + '��∇������, provided that 2�� . ∂���� = 0, 
the gauge invariances yield  
 '��(��h(�����i − C����� = 0��              (24) 
 
Considering in addition the invariance of the displacement ���� 
(6), one must have ∇���(∇������) = 0��, i.e. ∂����� = 0��. This 

implies ∂���� = ���[(]�). From those substitutions, one can now 
define new T vector fields from (14). One finds instead static 
fields given by 

��± = 0��;  ���∓ = ∓(�� × ���[(]�)             (25) 
 
Consequently, one deducts that the L mode definitions are 
invariant to near magnetic-like static fields. There is no electric 
like field due to that last invariance. This characterizes the 
perfect media. If the previous radiations are dependent of 
electrons, these should be due to other fermions executing 
longitudinal motions. In any cell ,these can only be the free 
electron complements, i.e. linked electrons of the crystalline 
structure. There exist then two kinds of such structures in this 
case. 
 
Nuclear-like crystalline field As before, the choice of 

substitutions 2�� ↦ 2�� ± ∂����′ and 8� ↦ 8� + '��∇������′ lets invariant 
the gauges for local fields given by the relations 
 '��(��h(�����′i + C�����′ = 0��             (26) 
 

The invariance of ���� yields instead the equivalent magnetic-like 

static fields given by  ���±′ = ± (�� × ���[′ (]�). These correspond 
then to two other kinds of crystal. The subsection below 
indicates how the different systems can be identified. 
 

Characterization of cubic systems Note that the different 
equations describing the free electrons and crystals rely on the 
signs relatively to the gauges. Hence, it is necessary to examine 
the four gauge couplings originating these. We determined the 
different crystalline structures by considering the crystal 
frontiers such as each cell mode respects both gauges of the 

related coupling. Table-1 summarizes the results. The signs of 
both first columns identify the corresponding gauges; the first 
represents a scalar field gauge and the second a vector field 
gauge. The equations are similar to those given here (see also 
our second article6). One identified the structures with respect to 
their scalar field potentiallities; their electric-like fields as well. 
The sign (-) in Γ means that the crystal possesses at least one ion 
inside. That is the case of bcc and cc systems (for complex 
cubic). The last one includes all other kinds of crystals. The 
non-zero R�� means that the crystal possesses at least one ion on 
each face. This is the case of fcc and cc systems. The zero T�� 
means the non-existence of rotating charges on crystals six 
faces. 
 

One better understands here the signs of gauge relations with 
respect to free electrons: cP system has both electron kinds on 
its faces contrarily to bcc; fcc system only has vector electrons 
while cc only has scalar electrons. Both first systems describe 
crystalline fields of long range while the two lasts describe 
crystalline nuclear fields. Note that the magnetism sign 
corresponds to the opposite sign of the scalar gauge as seen 
above. Two kinds of magnetism appear in cubic crystals. Both 
have opposite field orientations corresponding certainlty to both 

spin-1/2 orientations. By definition, ���1 and ���1′ define the 
magnetism while ���? and ���?′  define the antimagnetism by 
opposition.  
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 Table-1: Gauge couplings and fundamental expressions at crystal interfaces (x=l, t) 

Gauge coupling Interface equation Γ E��� B��� System Magnetism Examples 

(+,+) ⧠�|2�� 〉 = 0 I?(��2���  0�� 0�� cP ���? I-Po 

(−,−) ⧠�|2��〉 = 0 −I?(��2��� 0�� 0�� bcc ���1 I-Fe, CsCl 

(−, +) ⧠~�|2�	〉 = 0 I1(��2��	  −2(��8� 0�� fcc ���1′  Al, Cu, Ni 

(+, −) ⧠~�|2��〉 = 0 −I1(��2��� −2(��8� 0�� cc ���?′  C(d), NaCl 

With I± = 1 ± '��/'�� 

 

Results and discussion 

It appeared that the transverse elastic field description is 
comparable to that of electromagnetic field. A simple 
substitutions of suantities do for that; the celerity '� becoming 
that of electromagnetic waves. However, the longitudinal mode 
has no equivalence. We showed from invariances that the cell 
fields are defined to near those of lattice free electrons and 
crystals linked electrons. These invariances express besides the 
conservations of energy and kinetic momentum of both kinds. 
Each crystal structure then behaves as a unique fermion-1/2 in 
each space-time direction defined by the L mode; the free 
electrons being defined by the T mode. One can then expect to 
have at the most four links between crystalline structures in 
ordinary espace-time. This characterizes then the metallic link 
in perfect media. This findings are very relevant to the best of 
our knowledge. 
 
Moreover, it appeared that in cells, the free electrons are 
responsible of spin waves, which then explain the thermal 
radiations in electromagnetism. One already knows, from 
quantum theory, the existence of spin waves and their 
applications8,9. Their obtainment here illustrates this theory 
inclusion. In addition, cubic crystals can express four kinds of 
static magnetic fields whose origins are quantum due to 
invariance meanings (see Table 1 results). The known theory 
explains this through magnetic moments in substances

3,10. Here, 
these are understandable from fermion fields. The absence of 
electric field fits with the known result in cubic crystals. 
However, when considering the non-invariance of the L 
displacement from relations (24) and (26), one obtains other 
kinds of magnetisms and electricity existence proper to non-
perfect media. These should correspond to isotropic and 
inhomogeneous media accordingly to the theory; otherwise, the 
theory should be translated for each case of anisotropic medium. 
 
Considering Table 1 solutions, the basic configurations surely 
originate the mechanical and electric properties of crystals, e.g. 
when crossed by an electric current. This is certainly the case of 
fcc system defining good conducting metals. The general 
solution of each crystalline field should however include those 
of less complex systems because of the number of lattice knots. 
That is, bcc system can also express cP field, fcc system can 

express cP field too and cc system can express all other fields; 
depending on a particular system. This also applies on 
magnetism. These findings are rather germane and unify 
phenomena of elasticity and electromagnetism at quantum scale. 
 
Conclusion 

To solve the motion equation for potential inertial forces, we 
defined the displacement vector from one Helmholtz theorem; 
this letting to introduce two kinds of 4-potentials. Then, we 
determined two gauges and two fields expressions for each 
through simple procedures. The vector fields are similar to those 
of Maxwell theory. This allowed establishing a complete 
analogy between transverse elasticity and electromagnetism. 
The scalar field, which independently exists but steadily linked 
to the previous, has no equivalence and this complets that 
classical theory. The consideration of gauge and field 
invariances in different ways showed the existence of special 
phenomena.  
 
We found that: i. the free electrons of cells originate 
longitudinal spin waves which originate thermal radiations. ii. 
Each cubic structure is definable by a static magnetic field. This 
is either positive or negative as expected. Hence, the theory suits 
for explaining the different kinds of magnetism including non-
perfect media to a great extend. iii. There are four kinds of cubic 
crystals accordingly to the number of possible gauge couples. 
iv. Each cubic system is characterized by particular expressions 
of transverse fields at interfaces in monocrystal lattices. This 
should help understanding, for instance, what happens with 
electrons in conducting materials. These are our findings. 
 
References  

1. Lazar M. (2009). The gauge theory of dislocations: a 
uniformly moving screw dislocation. Proc. R. Soc. A (465), 
2505-2520. 

2. Shankar R. (2017). Quantum Field Theory and Condensed 
Matter: An Introduction. Cambridge Univesity Press, UK, 
157-431. ISBN: 978-0-521-59210-9 

3. Kantorovitch L. (2004). Quantum theory of the solid state: 
an introduction. Springer Science+Business Media, Berlin, 
101-357. ISBN: 978-1-4020-2153-4 



Research Journal of Material Sciences ____________________________________________________________ISSN 2320–6055 

Vol. 6(1), 1-6, January (2018)  Res. J. Material Sci. 

 

 International Science Community Association            6 

4. Davis J.L. (1988). Wave propagation in solids and fluids. 
Springer-Verlag, New York, 274-311, ISBN-I3 978-1-
4612-8390-4 

5. Moukala L.M. and Nsongo T. (2017). A Maxwell like 
theory unifying ordinary fields. Res. J. Engineering Sci., 
6(2), 20-26. 

6. Moukala L.M. and Nsongo T. (2017). Vacuum Crystalline 
structures in field presence: The unified field versatility. 
BJMP, 3(2), 245-254.  

7. Biedenharn L.C. and Louck J.D. (1981). Angular 
momentum in quantum physics. Theory and application. 
Encycl. Math. Appl., 8, 716. 

8. Plihal M., Mills D.L. and Kirschner J. (1999). Spin wave 
signature in the spin polarized electron energy loss 
spectrum of ultrathin Fe films: Theory and experiment. 
Phys. Rev. Lett., 82, 2579. 

9. Kajiwara Y., Harii K., Takahashi S., Ohe J., Uchida K., 
Mizuguchi M. and Umezawa H. (2010). Transmission of 
electrical signals by spin-wave interconversion in a 
magnetic insulator. Nature, 464(7286), 262-266.  

10. Pavarini E. (2013). Magnetism: Models and Mechanisms, 
Institute for Advanced Simulation, Forschungszentrum 
Jülich-German. 1-44. ISBN: 978-3-89336-884-6 

 


