International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Optimization and modelling of the preparation of activated carbons from neem (Azadirachta Indica A. Juss) seed hulls based on Response Surface Methodology (RSM)

Author Affiliations

  • 1Université Cheikh Anta Diop (UCAD), Ecole Supérieure Polytechnique (ESP), Laboratoire Eau, Energie, Environnement et Procédés Industriels (LE3PI), B.P. 5085 Dakar-Fann, Sénégal
  • 2Université Cheikh Anta Diop (UCAD), Ecole Supérieure Polytechnique (ESP), Laboratoire Eau, Energie, Environnement et Procédés Industriels (LE3PI), B.P. 5085 Dakar-Fann, Sénégal and Institut National Polytechnique (INP), Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), UMR 1010 Laboratoire de Chimie Agro-Industrielle, BP 44362 - 31030 Toulouse Cedex 4, France
  • 3Université Cheikh Anta Diop (UCAD), Ecole Supérieure Polytechnique (ESP), Laboratoire Eau, Energie, Environnement et Procédés Industriels (LE3PI), B.P. 5085 Dakar-Fann, Sénégal and Institut National Polytechnique (INP), Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques (ENSIACET), UMR 1010 Laboratoire de Chimie Agro-Industrielle, BP 44362 - 31030 Toulouse Cedex 4, France and Université du Sine Saloum El Hadji Ibrahima Niass (USSEIN), UFR/ Sciences Fondamentales et de l’Ingénieur, BP 55 Kaolack, Sénégal
  • 4Université Cheikh Anta Diop (UCAD), Ecole Supérieure Polytechnique (ESP), Laboratoire Eau, Energie, Environnement et Procédés Industriels (LE3PI), B.P. 5085 Dakar-Fann, Sénégal and Université Amadou Mahtar Mbow, B.P. 45 927 Dakar-Nafa-VDN, Villa N°4334, Amitié 3, Dakar, Sénégal

Res. J. Material Sci., Volume 11, Issue (1), Pages 6-16, February,16 (2023)

Abstract

The activated carbons have been elaborated from neem seed hulls by chemical process using H3PO4 as the activating agent. The effects of impregnation ratio, temperature and pyrolysis time on yield, methylene blue and iodine values were studied. The Response Surface Methodology (RSM) was used for process optimization and modelling. The influence of the parameters was studied by analysis of variance (ANOVA) method to determine significant (items) factors. The common optimum conditions to produce an activated carbons determined using the desirability function of the design Expert 11 software, correspond to an impregnation ratio of 3, at a pyrolysis temperature of 527.81°C for 1h. The optimal conditions resulted in 63.13% yield of activated carbon with methylene blue and iodine values of 39.20mg.g-1and 788.24 mg.g-1 respectively. The ANOVA showed that temperature was the most effluent factor on pyrolysis yield while the impregnation ratio was the most influential factor on methylene blue and iodine adsorption capacity.

References

  1. Al Subhi, H., Adeeb, M. S., Pandey, M., Al Sadeq, H., Kumar, D. & Shukla, S. K. (2020)., Effect of different activation agents on the pollution removal efficiency of date seed activated carbon: process optimization using response surface methodology., Applied water science, 10(7), 1-9.
  2. Dao, M. U., Le, H. S., Hoang, H. Y., Tran, V. A., Doan, V. D., Le, T. T. N. & Sirotkin, A. (2021)., Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: Facile preparation, characterization, and adsorption properties., Environmental Research, 198, 110481.
  3. Piaskowski, K., Świderska-Dąbrowska, R. & Zarzycki, P. K. (2018)., Dye removal from water and wastewater using various physical, chemical, and biological processes., Journal of AOAC International, 101(5), 1371-1384.
  4. Mozumder, M. S. I. & Islam, M. A. (2010)., Development of treatment technology for dye containing industrial wastewater., Journal of Scientific Research, 2(3), 567-567.
  5. Maiti, S., Prasad, B. & Minocha, A. K. (2020)., Optimization of copper removal from wastewater by fly ash using central composite design of Response surface methodology., SN Applied Sciences, 2, 1-14.
  6. Atheba, P., Drogui, P. & Trokourey, A. (2018)., Adsorption kinetics and thermodynamics study of butylparaben on activated carbon coconut based., Journal of Encapsulation and Adsorption Sciences, 8(2), 39.
  7. Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z. N.; Lawan, I.; Wang, L. and Yuan, Z. (2021)., Adsorption of organic dyes from wastewater by metal-doped porous carbon materials., Journal of Cleaner Production, 284, 124773.
  8. Laskar, N. & Kumar, U. (2018)., Adsorption of Safranin (Cationic) dye from water by Bambusa tulda: Characterization and ANN modeling., Environmental Engineering Science, 35(12), 1361-1375.
  9. Wu, J., Wang, T., Wang, J., Zhang, Y. & Pan, W. P. (2021)., A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity., Science of the Total Environment, 754, 142150.
  10. Elhadiri, N., Bouchdoug, M., Benchanaa, M. & Boussetta, A. (2018)., Optimization of preparation conditions of novel adsorbent from sugar scum using response surface methodology for removal of methylene blue., Journal of Chemistry, 2018.
  11. Paksamut, J. & Boonsong, P. (2018)., Removal of Copper (II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents., In IOP Conference Series: Materials Science and Engineering, Vol. 317, No. 1, p. 012058. IOP Publishing.
  12. Shah, K. & Palmer, A. (2018)., Physico-chemical characteristics of Activated Carbon prepared from coconut shell., Int. J. Latest Eng. Res. Appl, 3(1), 27-31.
  13. Rahman, M. A., Amin, S. R. & Alam, A. S. (2012)., Removal of methylene blue from waste water using activated carbon prepared from rice husk., Dhaka University Journal of Science, 60(2), 185-189.
  14. El Naga, A. O. A., El Saied, M., Shaban, S. A. & El Kady, F. Y. (2019)., Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon., Journal of Molecular Liquids, 285, 9-19.
  15. Liu, J., Liu, Y., Peng, J., Liu, Z., Jiang, Y., Meng, M., ... & Ni, L. (2018)., Preparation of high surface area oxidized activated carbon from peanut shell and application for the removal of organic pollutants and heavy metal ions., Water, air & soil pollution, 229, 1-17.
  16. Andas, J. & Satar, N. A. A. (2018)., Synthesis and characterization of tamarind seed activated carbon using different types of activating agents: a comparison study., Materials Today: Proceedings, 5(9), 17611-17617.
  17. Fu, K., Yue, Q., Gao, B., Sun, Y. & Zhu, L. (2013)., Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation., Chemical Engineering Journal, 228, 1074-1082.
  18. Okeola, O. F., Odebunmi, E. O. & Ameen, O. M. (2012)., Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas fruit pericarp and seed coat., Bulletin of the Chemical Society of Ethiopia, 26(2).
  19. Yunusa, U., Usman, B. & Ibrahim, M. (2020)., Modeling and Regeneration Studies for the Removal of Crystal Violet Using Balanites aegyptiaca Seed Shell Activated Carbon., Journal of the Turkish Chemical Society Section A: Chemistry, 8(1), 195-208.
  20. Vunain, E. & Biswick, T. (2019)., Adsorptive removal of methylene blue from aqueous solution on activated carbon prepared from Malawian baobab fruit shell wastes: Equilibrium, kinetics and thermodynamic studies., Separation Science and Technology, 54(1), 27-41.
  21. Kwaghger, A. & Ibrahim, J. S. (2013)., Optimization of conditions for the preparation of activated carbon from mango nuts using HCl., American Journal of Engineering Research, 2(7), 74-85.
  22. Kouotou, D., Manga, H. N., Baçaoui, A., Yaacoubi, A. & Mbadcam, J. K. (2013)., Optimization of activated carbons prepared by and steam activation of oil palm shells., Journal of Chemistry, 2013.
  23. El Maguana, Y., Elhadiri, N., Bouchdoug, M., Benchanaa, M. & Jaouad, A. (2019)., Activated carbon from prickly pear seed cake: optimization of preparation conditions using experimental design and its application in dye removal., International Journal of Chemical Engineering.
  24. Mhemed, H. A., Gallego, M. M., Largeau, J. F., Kordoghli, S., Zagrouba, F. & Tazerout, M. (2020)., Gas adsorptive desulfurization of thiophene by spent coffee grounds-derived carbon optimized by response surface methodology: Isotherms and kinetics evaluation., Journal of Environmental Chemical Engineering, 8(5), 104036.
  25. Faye, M. (2010)., Nouveau procédé de fractionnement de la graine de Neem (Azadirachta Indica A. Jussi) sénégalais: production d,
  26. Djibril, D., Mamadou, F., Gérard, V., Geuye, M. D. C., Oumar, S. & Luc, R. (2015)., Physical characteristics, chemical composition and distribution of constituents of the neem seeds (Azadirachta indica A. Juss) collected in Senegal., Research Journal of Chemical Sciences, 3(2), 606-612.
  27. Burak, D. A. M. (2021)., Artifical neural network based wing optimization., M. Sc. Thesis, Department of Mechanical Engineering, Gazi University Institute of Sciences
  28. Anuwar, N. A. & Khamaruddin, P. F. M. (2020)., Optimization of Chemical Activation Conditions for Activated Carbon From Coconut Shell Using Response Surface Methodology (RSM) and Its Ability to Adsorb CO₂., In Third International Conference on Separation Technology 2020 (ICoST 2020) (pp. 234-248). Atlantis Press.
  29. Lia, G., Fangb, X., Lib, J., Wub, N., Wangb, H. & Wanga, X. (2018)., Preparation of super activated carbon of vetiver root: optimization by response surface method and study of adsorption behavior on bisphenol A in solution., In Presented at the 11th International Conference on Challenges in Environmental Science & Engineering (CESE-2018), Vol. 4, p. 8.
  30. Ahmad, M. A., Afandi, N. S. & Bello, O. S. (2017)., Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon., Applied Water Science, 7, 717-727.
  31. Mohammad, Y. S., Shaibu-Imodagbe, E. M., Igboro, S. B., Giwa, A. & Okuofu, C. A. (2014)., Modeling and optimization for production of rice husk activated carbon and adsorption of phenol., Journal of Engineering.
  32. Singh, R. & Bhateria, R. (2020)., Optimization and experimental design of the Pb2+ adsorption process on a nano-Fe3O4-based adsorbent using the response surface methodology., ACS Omega, 5(43), 28305-28318.
  33. Brahmi, L., Kaouah, F., Boumaza, S. & Trari, M. (2019)., Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones., Applied Water Science, 9, 1-13.
  34. Bouazizi, S., Jamoussi, B. & Bousta, D. (2016)., Application of response surface methodology for optimization of heavy metals biosorption on natural gum of acacia nilotica., International Journal of Engineering Research, 5(05).
  35. Ab Ghani, Z., Yusoff, M. S., Zaman, N. Q., Zamri, M. F. M. A. & Andas, J. (2017)., Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate., Waste management, 62, 177-187.
  36. Tchakala, I., Bawa, L. M., Djaneye-Boundjou, G., Doni, K. S. & Nambo, P. (2012)., Optimisation du procédé de préparation des Charbons Actifs par voie chimique (H3PO4) à partir des tourteaux de Karité et des tourteaux de Coton., International Journal of Biological and Chemical Sciences, 6(1), 461-478.
  37. Fregue, T. T. R., Ionel, I., Gabche, A. S. & Mihaiuti, A. C. (2019)., Optimization of the activated carbon preparation from avocado seeds, using the response surface methodology., Revista de Chimie, 70(2), 410-416.
  38. Sureshkumar, A. & Susmita, M. (2018)., Optimization of preparation conditions for activated carbons from polyethylene terephthalate using response surface methodology., Brazilian Journal of Chemical Engineering, 35, 1105-1116.
  39. Tan, I. A. W., Ahmad, A. L. & Hameed, D. B. (2008)., Preparation of activated carbon from coconut husk: optimization study on removal of 2, 4, 6-trichlorophenol using response surface methodology., Journal of Hazardous Materials, 153(1-2), 709-717.
  40. Balamourougane, J. S. (2021)., Production and Characterization of Activated Carbon from Dashen Brewery Gondar Spent Label as Precursor., Turkish Journal of Computer and Mathematics Education, 12(10), 628-635.
  41. Villota, S. M.; Lei, H.; Villota, E.; Qian, M.; Lavarias, J.; Taylan, V.; Agulto, I.; Mateo, W.; Valentin, M. and Denson, M. (2019)., Microwave-assisted activation of waste cocoa pod husk by H3PO4 and KOH—comparative insight into textural properties and pore development., ACS Omega, 4(4), 7088-7095.
  42. Md-Desa, N. S., Ab Ghani, Z., Abdul-Talib, S. & Tay, C. C. (2016)., Optimization of activated carbon preparation from spent mushroom farming waste (SMFW) via Box–Behnken design of response surface methodology., Malaysian Journal of Analytical Sciences, 20(3), 461-468.
  43. Salman, J. M. (2014)., Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution., Arabian Journal of Chemistry, 7(1), 101-108.
  44. Ateş, F. & Özcan, Ö. (2018)., Preparation and characterization of activated carbon from poplar sawdust by chemical activation: comparison of different activating agents and carbonization temperature., European Journal of Engineering and Technology Research, 3(11), 6-11.
  45. Almahbashi, N. M. Y., Kutty, S. R. M., Ayoub, M., Noor, A., Salihi, I. U., Al-Nini, A., ... & Ghaleb, A. A. S. (2021)., Optimization of preparation conditions of sewage sludge based activated carbon., Ain Shams Engineering Journal, 12(2), 1175-1182.
  46. Louarrat, M., Enaime, G., Baçaoui, A., Yaacoubi, A., Blin, J. & Martin, L. (2019)., Optimization of conditions for the preparation of activated carbon from olive stones for application in gold recovery., Journal of the Southern African Institute of Mining and Metallurgy, 119(3), 297-306.
  47. Balogoun, C. K., Bawa, M. L., Osseni, S. & Aina, M. (2015)., Préparation des charbons actifs par voie chimique à l, International Journal of Biological and Chemical Sciences, 9(1), 563-580.
  48. Alau, K. K., Gimba, C. E., Kagbu, J. A. & Nale, B. Y. (2010)., Preparation of activated carbon from neem (Azadirachta indica) husk by chemical activation with H3PO4, KOH and ZnCl2., Arch Appl Sci Res, 2(5), 451-5.
  49. Yenisoy-Karakaş, S., Aygün, A., Güneş, M. & Tahtasakal, E. (2004)., Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics., Carbon, 42(3), 477-484.
  50. Armand, A. E., Augustin, Y. Y., Urbain, K. Y. & Albert, T. (2020)., Optimisation de la préparation de charbons activés à base d, International Journal of Innovation and Applied Studies, 29(4), 1161-1171.
  51. Liang, Q., Liu, Y., Chen, M., Ma, L., Yang, B., Li, L. & Liu, Q. (2020)., Optimized preparation of activated carbon from coconut shell and municipal sludge., Materials Chemistry and Physics, 241, 122327.