International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Enhanced red emission from CaZrO3:Eu3+ nano-phosphors prepared by Sol-gel technique

Author Affiliations

  • 1M.D.U., Rohatk-124001, Haryana, India
  • 2M.D.U., Rohatk-124001, Haryana, India
  • 3M.D.U., Rohatk-124001, Haryana, India

Res. J. Material Sci., Volume 11, Issue (1), Pages 1-5, February,16 (2023)

Abstract

Alkali metal ions codoped CaZrO3:Eu3+ nanophosphors series prepared by sol gel technique were further reheated to 750 oC to improve crystallinity of the product. The crystal structure and surface morphology of materials were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. XRD results confirmed orthorhombic perovskites structures of CaZrO3:Eu3+. The surface morphologies of materials were consisting of small, coagulated, cubical particles with smooth and regular surfaces. The characteristic strong red emissions of Eu3+ ions in CaZrO3:Eu3+, M (M=Li+, Na+, K+) mainly at 613nm is due to 5D0→7F2 transitions and other weaker emissions were also observed at 575, 592, 654, and 698-705 nm corresponding to 5D0→7FJ (where J = 0, 1, 3, 4) transitions respectively. The remarkable increase of photoluminescence intensity corresponding to 5D0→7F2 transitions was observed in CaZrO3:Eu3+ if co-doped with Li+ ions.

References

  1. Huang J., Zhou L., Lan Y. and Gong, F. (2011)., Synthesis and luminescence properties of the red phosphor CaZrO3:Eu3+ for white light-emitting diode application., Central European Journal of Physics, 9(4), 975-979. http://dx.doi.org/10.2478/s11534-010-0132-7
  2. Chand S., Khatkar S.P. and Singh I. (2018)., Improved energy transfer process in BaZrO3:Eu3+ nanophosphor synthesized by Sol-gel technique., Res. J. Material Sci., 6(4), 1-6.
  3. Singh D., Tanwar V. and Singh I. (2016)., Rapid synthesis and enhancement in down conversion emission properties of BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) nanophosphors., J. Mater. Sci. Mater. Electron., 27(3), 2260-2266. http://doi.org/10.1007/s10854-015-4020-1
  4. Boutinaud P., Pinel E., Dubois M., Vink A.P. and Mahiou R. (2005)., UV-to-red relaxation pathways in CaTiO3:Pr3+., J. Lumin., 111(1-2), 69-80. https://doi.org/10.1016/j.jlumin.2004.06.006
  5. Okamoto S. and Amamoto H. (2001)., Characteristic enhancement of emission from SrTiO3:Pr3+ by addition of Group-IIIb ions., Appl. Phys. Lett. 78(5), 655. https://doi.org/10.1063/1.1343491
  6. Zhang H. X., Kam C.H., Zhou Y. and Chan Y.C. (2000)., Green up conversion luminescence in Er3+:BaTiO3 films., Appl. Phys. Lett., 77(5), 609. https://doi.org/10.1063/1. 127060
  7. García-Hernández, M., García-Murillo, A., de J. Carrillo-Romo, F., Jaramillo-Vigueras, D., Chadeyron, G., De la Rosa, E. and Boyer, D. (2009)., Eu-doped BaTiO3 powder and film from sol-gel process with polyvinylpyrrolidone additive., International journal of molecular sciences, 10(9), 4088-4101.
  8. Zhang H., Li N., Li K. and Xue D. (2007)., Structural stability and formability of ABO3-type perovskite compounds., Acta Crystallographica Section B: Structural Science, 63(6), 812-818. https://doi.org/10.1107/s 0108768107046174
  9. Singh V., Watanabe S., Gundu Roa T.K., Al-Shamery K., Haase M. and Dahl Jho Y. (2012)., Synthesis, characterisation, luminescence and defect centres in solution combustion synthesised CaZrO3:Tb3+ phosphor., J. luminesence. 132(8), 2036-2042. http://dx.doi.org/10. 1016/j.jlumin.2012.03.027
  10. Zhang H.W., Fu X. Y., Niu S. Y. and Xin Q. (2008)., Blue luminescence of nanocrystalline CaZrO3:Tb3+ phosphors synthesized by a modified Pechini Sol–gel method., J. Lumin. 128(8), 1348-1352. http://dx.doi.org/10.1016%2 Fj.jlumin.2008.01.007
  11. Huang J., Zhou L., Wang Z. and Lan Y. (2009)., Photoluminescence Properties of SrZrO3:Eu3+ and BaZrO3:Eu3+ Phosphors with Perovskite Structure., Journal of Alloys and Compounds, 487(1–2), L5–L7. http://dx.doi.org/10.1016/j.jallcom.2009.07.153
  12. Alarcon J, van der Voort D and Blasse G (1992)., Efficient Eu3+ luminescence in non-lanthanide host lattices., Mat Res Bull, 27(4), 467–472. https://doi.org/10.1016/0025-5408 (92)90024-T
  13. Mari B., C-Coca P., Singh K. C., Kaushik R. D. and OM Hari (2013)., Preparation and Luminescence Properties of MZrO3:Eu3+, A (M=Ca2+, Ba2+; A=Li+, Na+, K+) Phosphors with Perovskite Structure., Acta Phys. –Chim. Sin., 29(6), 1357-1362. https://doi.org/10.3866/PKU.WHXB201304032
  14. Joly A. G., Chen W., Zhang J. and Wang, S. (2007)., Electronic energy relaxation and luminescence decay dynamics of Eu3+ in Zn2SiO4:Eu3+ phosphors., J. Lumin., 126(2), 491-496. http://dx.doi.org/10.1016%2Fj.jlumin. 2006.09.004
  15. Singh D. K., Baitha P. K. and Manam J. (2016)., Enhancement of luminescence intensity and spectroscopic analysis of Eu3+ - activated and Li+ charge-compensated CaTiO3 color tunable phosphors for solid-state lighting., Applied Physics A, 122, 1-15. DOI https://doi.org/10. 1007/s00339-016-0201-x
  16. Xiao X. Yan B. (2007)., Photoluminescence of Y0.6Gd0.4NbO4:Eu3+/Tb3+ micrometric phosphors derived from hybrid precursors., J. Mater. Lett. 61(8-9), 1649-1653. http://dx.doi.org/10.1016%2Fj.matlet.2006.07.092
  17. Lim H. S., Ahmad A. and Hamzah H. (2013)., Synthesis of zirconium oxide nanoparticle by sol-gel technique., AIP Conf. Proc., 31th Dec., 1571(1), 812. https://doi.org/10.1063/1.4858755
  18. S. Ramesh, (2013)., Sol-Gel Synthesis and Characterization of Ag3(2+𝑥) Al𝑥Ti4−𝑥O11+𝛿 (0.0 ≤ 𝑥 ≤ 1.0) Nanoparticles., J. Nanosci, 1-9. http://dx.doi.org/10. 1155/2013/929321
  19. Izquierdo Pantoja M. T., Turan A., García S. and Maroto Valer M. (2018)., Optimization of Li4SiO4 synthesis conditions by solid state method for maximum CO2 capture at high temperature., 6, 3249-3257. https://doi.org/10.1039 /C7TA08738A
  20. Marí B., Moya M., Singh, I. and Chand S. (2012)., Characterization and photoluminescence properties of some CaO, SrO and CaSrO2 phosphors co-doped with Eu3+ and alkali metal ions., Optical Materials, 34(8), 1267–1271. https://doi.org/10.1016/j. optmat. 2012.01.032
  21. Zhang H.W., Fu X. Y., Niu S. Y. and Xin Q. (2004)., Low temperature synthesis of nanocrystalline YVO4:Eu via polyacrylamide gel method., J. Solid State Chem., 177(8), 2649-2654. https://doi.org/ 10.1016/j.jssc.2004. 04.037
  22. Singh D. and Kadyan S. (2017)., Synthesis and optical characterization of trivalent europium doped M4Al2O9 (M = Y, Gd and La) nanomaterials for display applications., J. Mat. Sci: Mat. in Elec. DOI: https:// link.springer.com/article/10.1007/s10854-017-6901-y
  23. Singh D., Tanwar V., Singh I. and Kadyan P.S. (2014)., Synthesis and Luminescent Characterization of MAlO3:Eu3+ Red Nanophosphors., Adv. Sci. Lett., 20(7-9), 1726-1729. https://doi.org/10.1166/asl.2014.5736
  24. Singh D. and Tanwar V. (2017)., Optical characteristics of Eu (III) doped MSiO3 (M = Mg, Ca, Sr and Ba) Nanomaterials for white light emitting applications., J. Mater. Sci. Mater. Electron, 28(4), 3243-3253. https://link.springer.com/article/10.1007/s10854-016-5914-2
  25. Lin H., Liang H., Zhang G. and Su Q. (2011)., The luminescence of Eu activated BaMg (BO) phosphors., Applied Physics A: Materials Science & Processing, 105(1), 143–147. https://doi.org/10.1007/s00339-011-646 5-2
  26. Lu Z., Chen L., Tang Y. and Li Y. (2005)., Preparation and luminescence properties of Eu3+-doped MSnO3 (M = Ca, Sr and Ba) perovskite materials., J. Alloy. Compd., 387 (1-2), L1-L4. https://doi.org/10.1016 /j.jallcom.2004.06.036
  27. Blasse G. and Grabmaier B.C. (1994)., How Does a Luminescent Material Absorb Its Excitation Energy? Luminescent Materials., Springer: Berlin, 10-32. ISBN: 978-3-642-79017-1
  28. Ryu H., Singh B. K., Bartwal K. S., Brik M. G. and Kityk, I. V. (2008)., Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3: Pr3+., Acta Materialia, 56(3), 358-363. https://doi.org/10.1016/j.actamat.2007.09.041
  29. Diallo P. T., Jeanlouis K., Boutinaud P., Mahiou R. and Cousseins J. C. (2001)., Improvement of the optical performances of Pr3+ in CaTiO3., Journal of alloys and compounds, 323, 218-222.
  30. Tang J., Yu X., Yang L., Zhou C. and Peng X. (2006)., Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+., Mater. Lett.. 60(3), 326-329. https://doi.org/10.1016/j.matlet.2005.08.047
  31. Mari, B., Singh, I. Singh, K.C., Cembrero-Coca, P., Singh, D. and Chand, S. (2013)., Red emitting MTiO3 (M = Ca or Sr) phosphors doped with Eu3+ or Pr3+ with some cations as co-dopants., Displays, 34(4), 346–351. http://dx.doi.org/10. 1016/j.displa.2013.07.003
  32. Yin Q., Qui K., Chen Y., Liu J. and Xiao X. (2020)., Enhancements of luminescent properties of CaTiO¬¬3: Dy3+, Pr3+ via doping M+= (Li+, Na+, K+)., Materials Letters 127488, 266(668). https://doi.org/10.1016/ j.matlet.2020.127488
  33. Kumar M., Vijayalakshmi R.P. and Rtanakaram Y.C. (2022)., Investigation of structural and optical properties of Pr3+ doped and Pr3+/Dy3+ co-doped multicomponent Bismuth phosphate glasses for visible light applications., Journal of Molecular Structure, 1265(3), 133333. http://dx.doi.org/10.1016/j.molstruc.2022.133333