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Abstract  

To study the lattice dymamics of GaP-InP having Zinc-blende structure in a new non-central rigid ion model (NC-RIM) which 

in corporates three types of interactions (i) Non-coulombic forces (ii) Coulombic forces (iii) Bond bending forces has been used 

developed. The model involves seven model parameters; we used six critical point phonon frequencies, two elastic constants. 

The applications of the present model (NC-RIM) have been made to calculate the phonon dispersion relations, Debye 

characteristic temperature and specific heat of GaP-InP. The comparision of theoretical results with the available experimental 

data has been made along the three sysmmetry direction [100], [110] and [111]. A reasonably good agreement observed 

between theory and experiments. 
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Introduction 

The lattice dynamics of semi conductor compounds have been 

extensively studied in recent years. With the development of 

inelastic neutron scattering experiments, a vast amount of data 

has been accumulated for phonon dispersion curves of various 

II-VI and III-V compounds
1-4

. The phenomenological models 

which have been used to calculate the frequencies of zinc-

blende structure crystals can be broadly classified into two 

categories. (i) Rigid Ion Model (RIM)
 5-7

(ii) Shell Model
8-9

. The 

rigid ion model involves the ion rigidity hypothesis; whereas the 

shell model takes into account the ionic polarizability.  

 

In developing a model for a crystal having covalent bonding 

there is a fundamental difficulty related to the introduction of 

noncentral forces. In the usual definition of a noncentral forces. 

In the usual definition of noncentral interation the corresponding 

force parameters noncentral forces can be due to the rotation of 

on e atom about another, but must be due to a change in the 

configuration of the atoms (or bonds), and these force 

parameters must take into account at least two coordination 

spheres. The Rigid ion model (RIM) and its various 

ramifications  have been widely used to explain several lattice 

dynamic properties of perfect and imperfect zinc-blende 

crystals
10,11

. These models, although economical in force 

parameters, ignore completely the non-central interaction in the 

lattice. The valence Force Fild Model (VFFM) as used by Price 

et al incorporate bond-bending, bond stretching and point 

coulombic interactions
12

. Later on the original 14 parameter 

VFFM was modified on the lines of shell model by 

Vageletos et al. and Feldkamp et al.
4, 13

. In addition to RIM, 

SNIM (Second Neighbour Ionic Model) and VFFM, some other 

models e.g., the bond charge model (BCM) and deformable 

dipole model (DDM) have also been used for zinc-blende 

crystals
14-16

. 

The present article is devoted to making use of a seven 

parameters non-central rigid ion model (NC-RIM). Recently 

proposed with its application on compounds for studying, the 

vibrational properties of GaP-InP crystals. Since a fairly good 

agreement was found between theory and experiment we 

thought it work while to study the lattice dynamics of other 

chemically crystals. It is however, no longer interesting to study 

the phonons in one isolated crystals. We have to examine as 

many members of zinc-blende (Z-B) family as possible. In this 

paper is to give details of NC-RIM with into crystals Ga-In 

pnictides. 

 

The Dynamic Model: The potential energy Φ of the 

compounds possessing the Zinc-blende structure is expressed as 
N C

kk' kk ' kk '    (1) 

Where superscripts N and C refer to the non-coulombic and 

coulombic parts. 

The non-coulombic potential energy of the Zinc-blende 

structure 
N using Taylor’s series can be written as 

    
1 1

N N
2N 0 0

lmn lmn 0 lmn 0 lmn lmn 0

lmn |r| r r r

1 d 1 1 1 d 1 d
S S S S x S S

r dr 2 2 r dr r dr
 

        
               
         


 (2) 

 

Where So and Slmn are the displacement of the crystal ion and its 

first neighbour ions form their normal positions, rlmn represents 

the position coordinates of neighbouring ions in equilibrium. l, 

m, n represent the direction cosines of the line joining the 

central ion and a nearest neighbour.  

 

|r1| is the nearest neighbour distance. In our work we have 

considered the non-columbic interaction between central ion its 

two nearest neighbour. Let us define force constants A and B in 

terms of the derivatives of potential energy 
N
. 
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Where K = 1, 2. r1 refers to first neighbour and r2 refers to 

second neighbour, e is electronic charge and (V=2a
3
) volume 

per unit cell. 

 

The first nearest neighbour we have taken the force constant B 

and A equal to zero for the first derivative of the potential 

energy. In the second neighbour however, there are two types of 

different atoms (KK) or (K'K'). As result B1, B2 are the force 

constants for the second neighbour corresponding to first 

derivative of potential energy for K, K type or K', K' type of 

interatomic interactions. Likewise A1, A2 are the force constants 

corresponding to the second derivative of potential energy. X 

and es
*
 effective ionic charge parameters, eL

*
 and eT

*
 

Longitudinal and Transverse effective charge parameters. 

 

The secular determinant for determining the angular frequency 

of modes of vibrations is usually written as 

  2

kk 'D q,kk ' 0        (4) 

 

Where K, K’ = 1, 2………..S, label the ions per unit cell q  

denotes the wave vector whose allowed values range over the 

first brillouin zone.  and  = x, y or z designating the 

coordinate axes and  is the usual Kronecker-delta symbol. mK 

is the mass of the ion K in the l 
th

 cell. 

 

The elements of the dynamical matrix are defined as 

     
l ' k k '

1
D q,kk ' lk, l 'k ' exp i q lk, l 'k '

m m
        

 

Where       º lk, l 'k ' lk l 'k '      denotes the coupling 

parameters between ions (lK) and (l'K'). The dynamical matrix 

 D q,kk '  is constructed from constituents, Cochran et al.
17

.  

N CD(q,kk ') D (q,kk ') D (q,kk ')                  (5) 

 

The first term 
ND (q,kk ')  of the dynamical matrix is the non-

columbic interaction part which is introduced to stimulate the 

contributions from non-coulombic interaction to the potential 

energy. The second term is coulombic interaction part due to 

undeformable ion interaction, and we can write it conventional 

matrix form as 
CF ZQZ                   (6) 

 

Where Z is a diagonal matrix specifying the effective dynamical 

charges ZK. The matrix elements of Z are given. 

kk ' kk ' kZ Z     

 

Likewise the element of Q is expressed as 

   kk ' kk ' k" k kk '

k"

Q Q q Z / Z Q (0)     

 

Where Q is the coulombic coefficient matrix representing the 

coulombic range electrostatic interaction.  

 

In view of these observations our model essentially reduces to 

the rigid ion model incorporating non-coulombic and coulombic 

interactions.  

 

We shall obtain matrix element D (q,KK') for such 

interactions. In the Zinc-blende structure the dynamical matrix 

 D q,kk '  is a (6×6) matrix usually written as 

 
   

   *

D q,11 D q,12
D q,kk '

D q,12 D q,22
                                 (7) 

 

Where  D q,11  and  D q,12  are 3×3 submatrices and 

 *D q,12  is the complex conjugate of  D q,12 . The 

element of submatrices can be written as the sum of the non-

coulombic (N) range and Coulombic (C) range contribution, 

Thus 

     N CD q,kk D q,kk D q,kk     

     N CD q,kk ' D q,kk ' D q,kk '                       (8) 

 

Where superscript N and C refer to non-coulombic and 

coulombic contribution, respectively, suffix α and β (=X, Y, Z) 

used with the submatrices represent their elements.  

 

The potential energy 
N
 giving rise to the NC-RIM has been 

assumed to be of the form  

 
2

2N 1 e

2 V


 
    

 
 

Where () is the change in the angle under consideration and  

is the corresponding force constant. Where e is the electronic 

charge and volume V (=2a
3
) of the unit cell. The change in the 

angle () is calculated geometrically figure 1 as 

 

 
   A O nA B O nBS S S S

| OA | | OB |

   
    

where AS , OS  and BS  are the displacement vectors of the 

respective atom A, O and B. nA  and nB  are the unit vectors 
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perpendicular to the vectors OA  and OB , respectively and 

lying in the plane OAB (figure 1). The details is of all such 

angles have been given by CGW. 

 

0


OA

OB

B

SB

SA

B

SO

(S  - S ). nA O A

(S  - S ). nB O B

nA

nA

 
Figure-1 

Geometrical interpretation bond-bending interaction 
 

The matrix elements for the non-coulombic interaction are 

           
2

N 2 2 2 2 2 2 2 2

xx 1 1 x x y z 1 y z y z

1

e / v 4
D q,11 A 2B 4 A B 2S 1 2S S S 8B S S 2S S

m 3

 
          

 

           
2

N 2 2 2 2 2 2 2 2

xx 2 2 x x y z 2 y z y z

1

e / v 4
D q,22 A 2B 4 A B 2S 1 2S S S 8B S S 2S S

m 3

 
          

 

   
2

N

xy 1 1 x y x y

1

e / v
D q,11 8 A B S S C C

m
   

 

   
2

N

xx 2 2 x y x y

2

e / v
D q,22 8 A B S S C C

m
   

 

    
2

N

xx x y z x y z

1 2

e / v
D q,12 4 A 2B C C C iS S S

m m
    
 

 

    
2

N

xy x y z x y z

1 2

e / v 4
D q,12 A B S S C iC C S

3m m

 
    

 
(9) 

 

Where x x
x x

q a q a
S sin ,C cos

2 2
   xq , yq  and zq  are 

components of the propagation vector q  along x, y and z axis 

respectively ‘2a’ is the semilattice constant other elements of 

the matrix can be written using cyclic permutation for changing 

the Cartesian indices.  

 

Coulombic Interaction Behaviour: The expression for the 

matrix elements due to coulombic interaction were first derived 

by, Kellermann for alkalihalides. Cochran et al., modified them 

for the diamond structure and Merten for zinc-blende 

structure
18

. The potential energy 
C
, giving rise to such 

coulombic interaction between the ions, is of the form.  

   
C k ' k '

lk l 'k '

Ze Ze1

2 º l 'k ' º lk
 

  
             (10) 

 

Where the symbol have their usual meaning. The matrix 

element due to such coulombic interaction are, (Banerjee et 

al.
10

). 

For q 0    

 C k k '
xy xy

k k '

Ze Ze1 4
D q,kk '

V 3m m

 
  

 
 

For q 0  

   
2 2 3

C 1k
xy xy xy xy

k

Z e1 8
D q,kk ' G kk H

m V 3

 
     

 

 

   C nk k '
xy xy xy

k k '

Ze Ze1
D q,kk ' G kk ' H

m m V

 
      

 
 

 

Where 

 
   2

x x y y 2

xy 2 2
h

h q h q
G kk 4 exp q h

4eh q

   
    

 


 
  

  
2

x x y y 2

xy x y z2 2
h

h q h q
G kk ' 4 exp q h exp i h h h / 2

4eh q

    
         

  


     2 2

32

2 l
f l exp l l

ll


    



     
3

2 24
g l 3f l exp l


  


 

g(n) and f(n) can be written analogously and  

   
l

2

0

2
l l exp t dt



    

  

 

Where,  is an arbitrary parameter usually taken to be unity l 

(lx, ly, lz) and n(nx, ny, nz) are the lattice vectors and h(hx, hy, hz) 

are the reciprocal lattice vectors. The present calculations of the 

coulombic matrix elements have been made by taking 

summation over 137 values of, h generated in the units of π/a, in 

the reciprocal space. Both of the submatrices, due to coulombic 

range force, hence have been calculated as the independent of 

the factor (Z
2
e

2
/a

3
), where Z has been treated as disposable 

parameter. Furthermore, the long wave length limit method used 

to calculate the elastic constants in terms of the force constants, 

and the methods of parameter determination have widely been 

discussed in the Thesis. However, we would still like to state 

briefly that model parameters in the present NC-RIM have been 

determined by making use of four critical point phonon 

frequencies 
       X X

LO TO LO LA

 
    , two elastic constants (C11 and 

C12) and the lattice equilibrium condition. The use of lattice 

equilibrium condition makes the parameters lie within their 

physical significance. The experimental input data used for the 

evaluation are listed in table 1. The expression used for 

calculation of the specific heat at constant volume Cv, after 

solving few thermodynamics relations can be written as  
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 
  

i

2

v i2
q

3R x
C g q

2mn exp x 1
 

  
  (11) 

Where R(=NKb) is the universal gas constant. The term 

 i

b

h q
x

K T

 
  
 

 where h is Planck’s constant, Kb is 

Boltzmann’s constant, and T the absolute temperature in 

Kelvin’s   ig q  is correct statistical weight of the mode 

having the vibrational frequency  i q , where the subscript i 

stands for the branches 1 to 6 and q is the propagation wave 

vector in the reciprocal space. The symbol m (=2) and n 

(=1000) stand, respectively, for the number of atoms per unit 

cell and the number of subdivisions in the first brillouin zone. 

The use of the calculated specific heat Cv has been made to 

calculate the Debye characteristic temperature (θD) using the 

standard Cv Vs θD /T
10

. 

 

Results and Discussion 

The numerical values of the model parameters listed in the 

Table-1 have been used to solve the secular determinant 

(eqution4) for determining the phonon frequencies. For this 

purpose we have divided the first brillouin zone into a mesh of 

1000 points, but because of the cubic symmetry they reduce 48 

nonequivalent point (including origin) lying in the (1/48)th part 

of brillouin zone. When the proper statistical weight is assigned 

to them, we get 6000 frequencies. 

 

Table-1 

Experimental values of lattice constants (2a) in the unit of 

Angstrom, elastic constants in the units of 10
11

 dyne / cm, 

and frequencies in the units of terahertz masses of 

compound unti 10
-24

gm, The numerical values of the 

parameters are in the unit of 10
3
dyne/cm 

Quantities GaP InP Parameters GaP InP 

2a 5.45 5.87 A 89.44 90.03 

C11 14.11 10.22 A1 10.21 6.86 

C12 6.19 5.76 A2 13.47 13.92 

m1 51.42 51.42 B 23.08 9.69 

m2 115.74 190.61 B1 -3.33 -1.71 

νLO(Γ) 12.05 10.38 B2 -3.33 -1.71 

νTO(Γ) 10.96 9.12 X 5.62 6.25 

νLO(X) 11.06 9.95    

νLA(X) 7.75 5.85    

 

Conclusion 

The phonon dispersion relations for GaP-InP along the principal 

symmetry directions [100], [110] and [111] are displayed in 

figure-2, 3. The experimental points due to neutron scattering 

measurements have also been plotted in respective figures for 

comparison. It is observed that there is in general a good 

agreement between theory and experimental except at few point. 

 

 
Figure-2 

Phonon dispersion relation of GaP 

 

 
Figure-3 

Phonon dispersion relation of InP 
 

The frequency spectrum for this purpose was divided into the 

frequency interval of =0.1 THz for Ga-In pnictides, four 

major peaks at frequencies 2.0 THz, 4.3 THz, 5.3 THz and 

11.65 THz are dut to TA, LA, TO and LO modes respectively 

for GaP. The peaks are observed four major frequencies 

0.15THz and 5.4THz are due to transverse and longitudinal 

acoustic modes, while peaks frequencies 9.0THz and 10.8THz 

correspond to transverse and longitudinal optic modes for InP. 
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Calculated specific heat values for GaP and InP using the 

present model have been shown in table II. D values of InP 

have been plotted in figure-5. Calculated D vs T curve for GaP 

and InP as plotted in figure-4, 5 shows a very good agreement in 

entire temperature range. 

 

 
Figure-4 

(D-T) curve for GaP 

 

 
Figure-5 

(D-T) Curve for InP 

Table-2 

The calculated and measured experimental values of specific 

heat of Ga-In pnictide crystals units J/Mole-ºK and 

temperatures in Kelvin 

Temp. 

(ºK) 

GaP 

Cv(J/mole ºK) 

InP 

Cv(J/mole ºK) 

Calculated Exp. Calculated Exp. 

20 5.8 - 6.8 5.2 

30 6.2 - 9.6 - 

50 8.4 6.8 14.0 12.8 

60 10.8 - 16.0 - 

75 15.9 15.6 - - 

80 18.4 - 19.9 - 

100 24.4 22.0 24.0 22.8 

110 29.4 - 26.0 - 

120 31.0 30.0 29.7 - 

150 35.2 35.0 33.4 33.0 

175 40.0 40.0 36.2 - 

180 40.4 - 38.8 38.6 

200 41.8 42.0 38.8 38.0 

230 42.0 - 41.2 40.8 

250 42.0 - 41.6 40.0 

270 42.2 - 41.6 40.0 
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