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Abstract  

The time required for generating frequent patterns plays an important role. Some algorithms are designed, considering only 

the time factor. Our study includes depth analysis of algorithms and discusses some problems of generating frequent pattern 

from the various algorithms. We have explored the unifying feature among the internal working of various mining 

algorithms. The work yields a detailed analysis of the algorithms to elucidate the performance with standard dataset like 

Mushroom etc. The comparative study of algorithms includes aspects like different support values, size of transactions. 
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Introduction 

The term data mining or knowledge discovery in database has 

been adopted for a field of research dealing with the automatic 

discovery of implicit information or knowledge within the 

databases. The implicit information within databases, mainly the 

interesting association relationships among sets of objects that 

lead to association rules may disclose useful patterns for 

decision support, financial forecast, marketing policies, even 

medical diagnosis and many other applications. The 

development of tools capable in the automatic extraction of 

knowledge from data. To analyze the huge amount of data 

thereby exploiting the consumer behavior and make the correct 

decision leading to competitive edge over rivals
1
. 

 

The problem of mining frequent itemsets arose first as a 

subproblem of mining association rules. Apriori algorithm is 

quite successful for market based analysis in which transactions 

are large but frequent items generated is small in number
2
. 

Frequent itemsets play an essential role in many data mining 

tasks that try to find interesting patterns from databases such as 

association rules, correlations, sequences, classifiers, clusters 

and many more of which the mining of association rules is one 

of the most popular problems. Also Sequential association rule 

mining is one of the possible methods to analysis of data used 

by frequent itemsets
3
. The original motivation for searching 

association rules came from the need to analyze so called 

supermarket transaction data, that is, to examine customer 

behavior in terms of the purchased products. Association rules 

describe how often items are purchased together. For example, 

an association rule “beer, chips (60%)” states that four out of 

five customers that bought beer also bought chips. Such rules 

can be useful for decisions concerning product pricing, 

promotions, store layout and many others
4
. 

Frequent itemset mining problem: Studies of Frequent Pattern 

Mining is acknowledged in the data mining field because of its 

broad applications in mining association rules, correlations, and 

graph pattern constraint based on frequent patterns, sequential 

patterns, and many other data mining tasks. Efficient algorithms 

for mining frequent patterns are crucial for mining association 

rules as well as for many other data mining tasks. The major 

challenge found in frequent pattern mining is a large number of 

result patterns. As the minimum threshold becomes lower, an 

exponentially large number of patterns are generated. Therefore, 

pruning unimportant patterns can be done effectively in mining 

process and that becomes one of the main topics in frequent 

pattern mining. Consequently, the main aim is to optimize the 

process of finding patterns which should be efficient, scalable and 

can detect the important patterns which can be used in various 

ways
5
. 

 

Methodology 

The methodology used to mine frequent itemsets denoted 

(figure 1). 

 

FP-Growth Algorithm: FP-tree algorithm is based upon the 

recursively divide and conquers strategy; first the set of frequent 

1-itemset and their counts is discovered. With start from each 

frequent pattern, construct the conditional pattern base, then its 

conditional FP-tree is constructed (which is a prefix tree.). Until 

the resulting FP-tree is empty, or contains only one single path. 

(Single path will generate all the combinations of its sub-paths, 

each of which is a frequent pattern). The items in each 

transaction are processed in L order. (i.e. items in the set were 

sorted based on their frequencies in the descending order to 

form a list)
6
. The detail step is as follows: 

FP-Growth Method: Construction of FP-tree 



Research Journal of Material Sciences ____________________________________________________________ISSN 2320–6055 

Vol. 1(2), 1-5, March (2013)                Res. J. Material Sci. 

International Science Congress Association  2 

 

 
Figure – 1 

Methodology used to mine frequent itemsets 

 

Create root of the tree as a “null”. After scanning the database D 

for finding the 1-itemset then process the each transaction in 

decreasing order of their frequency. A new branch is created for 

each transaction with the corresponding support. If same node is 

encountered in another transaction, just increment the support 

count by 1 of the common node. Each item points to the 

occurrence in the tree using the chain of node-link by 

maintaining the header table. 

 

After above process mining of the FP-tree will be done by 

Creating Conditional (sub) pattern bases: 

 

Start from node constructs its conditional pattern base. Then, 

Construct its conditional FP-tree and perform mining on such a 

tree. Join the suffix patterns with a frequent pattern generated 

from a conditional FP-tree for achieving FP-growth. The union 

of all frequent patterns found by above step gives the required 

frequent itemset. 

 

In this way frequent patterns are mined from the database using 

FP-tree. 

 

Definition: Conditional pattern base: A “subdatabase” which 

consists of the set of prefix paths in the FP-tree co-occuring 

with suffix pattern.eg for an itemset X, the set of prefix paths of 

X forms the conditional pattern base of X which co-occurs with 

X
6
. 

 

Definition: Conditional FP-tree: The FP-tree built for the 

conditional pattern base X is called conditional FP-tree
6
. 

H-mine Algorithm: H-mine algorithm is the improvement over 

FP-tree algorithm as in H-mine projected database is created 

using in-memory pointers
7
. H-mine uses an H-struct new data 

structure for mining purpose known as hyperlinked structure. It 

is used upon the dynamic adjustment of pointers which helps to 

maintain the processed projected tree in main memory therefore 

H-mine proposed for frequent pattern data mining for data sets 

that can fit into main memory. It has polynomial space 

complexity therefore more space efficient then FP-Growth and 

also designed for fast mining purpose. For the large databases, 

first in partition the database then mine each partition in main 

memory using H-struct then consolidating global frequent 

pattern
7
. If the database is dense then it integrates with FP-

Growth dynamically by detecting the swapping condition and 

constructing the FP-tree. 

 

This working ensures that it is scalable for both large and 

medium size databases and for both sparse and dense datasets. 

The advantage of using in-memory pointers is that their 

projected database does not need any memory, the memory 

required only for the set of in-memory pointers. 

 

Recursive Elimination (RELIM): A close relative of this 

approach is the H-mine algorithm
8
. In a preprocessing step 

delete all items from the transactions that are not frequent 

individually, i.e., do not appear in a user-specified minimum 

number of transactions. This preprocessing is demonstrated, 

which shows an example transaction database on the left (table 

1). The frequencies of the items in this database, sorted 

ascendingly, are shown in the table in the middle. If we are 

given a user specified minimal support of 3 transactions, items f 

and g can be discarded. After doing so and sorting the items in 

each transaction ascendingly w.r.t. their frequencies we obtain 

the reduced database shown on the right (table 1). 

 

Table – 1 

Transaction database (left), item frequencies (middle), and 

reduced transaction database with items in transactions 

sorted ascendingly w.r.t. their frequency (right) 

 

 
 

Then select all transactions that contain the least frequent item 

(least frequent among those that are frequent), delete this item 

from them, and recurse to process the obtained reduced 
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database, remembering that the item sets found in the recursion 

share the item as a prefix. On return, remove the processed item 

also from the database of all transactions and start over, i.e., 

process the second frequent item etc. This process is illustrated 

for the root level of the recursion, which shows the transaction 

list representation of the initial database at the very top (figure 

2). In the first step all item sets containing the item e are found 

by processing the leftmost list. The elements of this list are 

reassigned to the lists to the right (grey list elements) and copies 

are inserted into a second list array (shown on the right). This 

second list array is then processed recursively, before 

proceeding to the next list, i.e., the one for item a. 

 

In these processing steps the prefix tree (or the H-struct), which 

is enhanced by links between the branches, is exploited to 

quickly find the transactions containing a given item and also to 

remove this item from the transactions after it has been 

processed. 

 

Split and Merge (SaM) algorithm: The Split and Merge 

(SaM) algorithm is a simplification of the already fairly simple 

Recursive Elimination (RElim) algorithm
9
. The split and merge 

algorithm employs only a single transaction list (purely 

horizontal representation), stored as an array. The steps are 

illustrated for a simple example transaction database: step 1 

shows the transaction database in its original form (figure 3). In 

step 2 the item frequencies are determined in order to discard 

infrequent items. With a minimum support of 3, items f and g 

are infrequent and thus eliminated. In step 3 the (frequent) items 

in each transaction are sorted according to their frequency, 

because processing the items in the order of increasing 

frequency usually leads to the shortest execution times. In step 4 

the transactions are sorted lexicographically into descending 

order, with an item with higher frequency preceding an item 

with lower frequency. In step 5 the basic data structure is built 

by combining equal transactions and setting up an array, in 

which each element consists of two fields: an occurrence 

counter and a pointer to the sorted transaction. 

 
Figure–2 

Procedure of the recursive elimination with the modification of the transaction lists (left) 

as well as the construction of the transaction lists for the recursion (right) 

 

 
Figure–3 

An example database: original form (1), item frequencies (2), transactions with sorted items 

(3), lexicographically sorted transactions (4), and the used data structure (5) 
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Figure–4 

The basic operations: split (left) and merge (right) 

 

The basic operations of the recursive processing, which follows 

the general divide-and-conquer scheme are illustrated in the 

split step (left) the given array is split w.r.t. the leading item of 

the first transaction (item e in our example). All elements 

referring to transactions starting with this item are transferred to 

a new array (figure 4). In this process the pointer (in) to the 

transaction is advanced by one item, so that the common leading 

item is “removed” from all transactions. Obviously, this new 

array represents the conditional database of the first 

subproblem, which is then processed recursively to find all 

frequent item sets containing the split item (provided this item is 

frequent). 

 

The conditional database for frequent item sets not containing 

this item is obtained with a simple merge step in right part 

(figure 4). The new array and the rest of the original array are 

combined with a procedure that is almost identical to one phase 

of the well-known mergesort algorithm. Since both arrays are 

lexicographically sorted, one merging traversal suffices to create 

a lexicographically sorted merged array. The only difference to 

a mergesort phase is that equal transactions (or transaction 

suffixes) are combined: There is always only one instance of 

each transaction (suffix), while its number of occurrences is 

kept in a counter. In our example this results in the merged array 

having two elements less than the input arrays together: the 

transaction (suffixes) cbd and bd, which occur in both arrays, 

are combined and their occurrence counters are increased to 2. 

 

Results and Discussion 

Data set: The dataset was obtained from the UCI repository of 

machine learning databases
10

. The characteristics of Mushroom 

dataset selected for the experiment (table 2). 

 

Table – 2 

The characteristics of Mashroom dataset 

File name 
Number of 

Records 

Number of 

Columns 

Mushroom.D90.N8124.C2.num 8124 23 

 

Result analysis: We have conducted a detailed study to assess 

the performance of projected data based frequent pattern mining 

algorithms. The performance metrics in the experiments is the 

total execution time taken and the number of patterns generated 

for Mushroom data set. For this comparison also same data sets 

were selected as for the above experiment with 30% to 70% of 

minimum support threshold. 

 

The execution time for all the algorithms with different support 

threshold for Mushroom data set (table 3). The time of 

execution is decreased with the increase support threshold. The 

execution time of the all discussed algorithm is nearby but it can 

also be analyzed that the execution time of SaM is 

comparatively less for higher support threshold. 

 

Table – 3 

Total execution time using Mashroom dataset 

Support Total Execution Time in Seconds 

FP-Growth H-mine Relim SaM 

30 0.13 0.11 0.11 0.11 

40 0.11 0.11 0.09 0.10 

50 0.09 0.09 0.09 0.08 

60 0.08 0.09 0.08 0.07 

70 0.08 0.08 0.07 0.06 

 

Conclusion 

In this work, an in-depth analysis of few algorithms is done 

which made a significant contribution to the search of 

improving the efficiency of frequent pattern mining. By 

comparing them to classical frequent pattern mining algorithms 

strength and weaknesses of these algorithms were analyzed. 

 

A comparison framework has developed to allow the flexible 

comparison of FP-growth, H-mine, Relim and SaM algorithms. 

The execution time of the all discussed algorithm is nearby but 

it can also be analyzed that the execution time of SaM is 

comparatively less for higher support threshold. 
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