
 Research Journal of Material Sciences __ISSN 2320–6055

 Vol. 1(2), 1-5, March (2013) Res. J. Material Sci.

 International Science Congress Association 1

A Study of Various Projected Data based Pattern Mining Algorithms

Soni Vinay
1
, Shah Nisarg

2
, Prajapati Samay

2
,

Damor Nirali

2
, Chaudhari Nimisha

2
, Patel Umang

2
,

Patel Ankit
2
, Chaudhari Vishvash

2
 and Prajapati Ashish

3

1LDRP Institute of Technology and Research, Gandhinagar, Gujarat, INDIA

2Gandhinagar, Gujarat, INDIA
3Alfa College of Engineering and Technology, Khatraj, Kalol, Gujarat, INDIA

Available online at: www.isca.in
Received 15th February 2013, revised 19th February 2013, accepted 14th March 2013

Abstract

The time required for generating frequent patterns plays an important role. Some algorithms are designed, considering only

the time factor. Our study includes depth analysis of algorithms and discusses some problems of generating frequent pattern

from the various algorithms. We have explored the unifying feature among the internal working of various mining

algorithms. The work yields a detailed analysis of the algorithms to elucidate the performance with standard dataset like

Mushroom etc. The comparative study of algorithms includes aspects like different support values, size of transactions.

Keywords: Frequent pattern, mining, Mashroom.

Introduction

The term data mining or knowledge discovery in database has

been adopted for a field of research dealing with the automatic

discovery of implicit information or knowledge within the

databases. The implicit information within databases, mainly the

interesting association relationships among sets of objects that

lead to association rules may disclose useful patterns for

decision support, financial forecast, marketing policies, even

medical diagnosis and many other applications. The

development of tools capable in the automatic extraction of

knowledge from data. To analyze the huge amount of data

thereby exploiting the consumer behavior and make the correct

decision leading to competitive edge over rivals
1
.

The problem of mining frequent itemsets arose first as a

subproblem of mining association rules. Apriori algorithm is

quite successful for market based analysis in which transactions

are large but frequent items generated is small in number
2
.

Frequent itemsets play an essential role in many data mining

tasks that try to find interesting patterns from databases such as

association rules, correlations, sequences, classifiers, clusters

and many more of which the mining of association rules is one

of the most popular problems. Also Sequential association rule

mining is one of the possible methods to analysis of data used

by frequent itemsets
3
. The original motivation for searching

association rules came from the need to analyze so called

supermarket transaction data, that is, to examine customer

behavior in terms of the purchased products. Association rules

describe how often items are purchased together. For example,

an association rule “beer, chips (60%)” states that four out of

five customers that bought beer also bought chips. Such rules

can be useful for decisions concerning product pricing,

promotions, store layout and many others
4
.

Frequent itemset mining problem: Studies of Frequent Pattern

Mining is acknowledged in the data mining field because of its

broad applications in mining association rules, correlations, and

graph pattern constraint based on frequent patterns, sequential

patterns, and many other data mining tasks. Efficient algorithms

for mining frequent patterns are crucial for mining association

rules as well as for many other data mining tasks. The major

challenge found in frequent pattern mining is a large number of

result patterns. As the minimum threshold becomes lower, an

exponentially large number of patterns are generated. Therefore,

pruning unimportant patterns can be done effectively in mining

process and that becomes one of the main topics in frequent

pattern mining. Consequently, the main aim is to optimize the

process of finding patterns which should be efficient, scalable and

can detect the important patterns which can be used in various

ways
5
.

Methodology

The methodology used to mine frequent itemsets denoted

(figure 1).

FP-Growth Algorithm: FP-tree algorithm is based upon the

recursively divide and conquers strategy; first the set of frequent

1-itemset and their counts is discovered. With start from each

frequent pattern, construct the conditional pattern base, then its

conditional FP-tree is constructed (which is a prefix tree.). Until

the resulting FP-tree is empty, or contains only one single path.

(Single path will generate all the combinations of its sub-paths,

each of which is a frequent pattern). The items in each

transaction are processed in L order. (i.e. items in the set were

sorted based on their frequencies in the descending order to

form a list)
6
. The detail step is as follows:

FP-Growth Method: Construction of FP-tree

Research Journal of Material Sciences __ISSN 2320–6055

Vol. 1(2), 1-5, March (2013) Res. J. Material Sci.

International Science Congress Association 2

Figure – 1

Methodology used to mine frequent itemsets

Create root of the tree as a “null”. After scanning the database D

for finding the 1-itemset then process the each transaction in

decreasing order of their frequency. A new branch is created for

each transaction with the corresponding support. If same node is

encountered in another transaction, just increment the support

count by 1 of the common node. Each item points to the

occurrence in the tree using the chain of node-link by

maintaining the header table.

After above process mining of the FP-tree will be done by

Creating Conditional (sub) pattern bases:

Start from node constructs its conditional pattern base. Then,

Construct its conditional FP-tree and perform mining on such a

tree. Join the suffix patterns with a frequent pattern generated

from a conditional FP-tree for achieving FP-growth. The union

of all frequent patterns found by above step gives the required

frequent itemset.

In this way frequent patterns are mined from the database using

FP-tree.

Definition: Conditional pattern base: A “subdatabase” which

consists of the set of prefix paths in the FP-tree co-occuring

with suffix pattern.eg for an itemset X, the set of prefix paths of

X forms the conditional pattern base of X which co-occurs with

X
6
.

Definition: Conditional FP-tree: The FP-tree built for the

conditional pattern base X is called conditional FP-tree
6
.

H-mine Algorithm: H-mine algorithm is the improvement over

FP-tree algorithm as in H-mine projected database is created

using in-memory pointers
7
. H-mine uses an H-struct new data

structure for mining purpose known as hyperlinked structure. It

is used upon the dynamic adjustment of pointers which helps to

maintain the processed projected tree in main memory therefore

H-mine proposed for frequent pattern data mining for data sets

that can fit into main memory. It has polynomial space

complexity therefore more space efficient then FP-Growth and

also designed for fast mining purpose. For the large databases,

first in partition the database then mine each partition in main

memory using H-struct then consolidating global frequent

pattern
7
. If the database is dense then it integrates with FP-

Growth dynamically by detecting the swapping condition and

constructing the FP-tree.

This working ensures that it is scalable for both large and

medium size databases and for both sparse and dense datasets.

The advantage of using in-memory pointers is that their

projected database does not need any memory, the memory

required only for the set of in-memory pointers.

Recursive Elimination (RELIM): A close relative of this

approach is the H-mine algorithm
8
. In a preprocessing step

delete all items from the transactions that are not frequent

individually, i.e., do not appear in a user-specified minimum

number of transactions. This preprocessing is demonstrated,

which shows an example transaction database on the left (table

1). The frequencies of the items in this database, sorted

ascendingly, are shown in the table in the middle. If we are

given a user specified minimal support of 3 transactions, items f

and g can be discarded. After doing so and sorting the items in

each transaction ascendingly w.r.t. their frequencies we obtain

the reduced database shown on the right (table 1).

Table – 1

Transaction database (left), item frequencies (middle), and

reduced transaction database with items in transactions

sorted ascendingly w.r.t. their frequency (right)

Then select all transactions that contain the least frequent item

(least frequent among those that are frequent), delete this item

from them, and recurse to process the obtained reduced

Research Journal of Material Sciences __ISSN 2320–6055

Vol. 1(2), 1-5, March (2013) Res. J. Material Sci.

International Science Congress Association 3

database, remembering that the item sets found in the recursion

share the item as a prefix. On return, remove the processed item

also from the database of all transactions and start over, i.e.,

process the second frequent item etc. This process is illustrated

for the root level of the recursion, which shows the transaction

list representation of the initial database at the very top (figure

2). In the first step all item sets containing the item e are found

by processing the leftmost list. The elements of this list are

reassigned to the lists to the right (grey list elements) and copies

are inserted into a second list array (shown on the right). This

second list array is then processed recursively, before

proceeding to the next list, i.e., the one for item a.

In these processing steps the prefix tree (or the H-struct), which

is enhanced by links between the branches, is exploited to

quickly find the transactions containing a given item and also to

remove this item from the transactions after it has been

processed.

Split and Merge (SaM) algorithm: The Split and Merge

(SaM) algorithm is a simplification of the already fairly simple

Recursive Elimination (RElim) algorithm
9
. The split and merge

algorithm employs only a single transaction list (purely

horizontal representation), stored as an array. The steps are

illustrated for a simple example transaction database: step 1

shows the transaction database in its original form (figure 3). In

step 2 the item frequencies are determined in order to discard

infrequent items. With a minimum support of 3, items f and g

are infrequent and thus eliminated. In step 3 the (frequent) items

in each transaction are sorted according to their frequency,

because processing the items in the order of increasing

frequency usually leads to the shortest execution times. In step 4

the transactions are sorted lexicographically into descending

order, with an item with higher frequency preceding an item

with lower frequency. In step 5 the basic data structure is built

by combining equal transactions and setting up an array, in

which each element consists of two fields: an occurrence

counter and a pointer to the sorted transaction.

Figure–2

Procedure of the recursive elimination with the modification of the transaction lists (left)

as well as the construction of the transaction lists for the recursion (right)

Figure–3

An example database: original form (1), item frequencies (2), transactions with sorted items

(3), lexicographically sorted transactions (4), and the used data structure (5)

Research Journal of Material Sciences __ISSN 2320–6055

Vol. 1(2), 1-5, March (2013) Res. J. Material Sci.

International Science Congress Association 4

Figure–4

The basic operations: split (left) and merge (right)

The basic operations of the recursive processing, which follows

the general divide-and-conquer scheme are illustrated in the

split step (left) the given array is split w.r.t. the leading item of

the first transaction (item e in our example). All elements

referring to transactions starting with this item are transferred to

a new array (figure 4). In this process the pointer (in) to the

transaction is advanced by one item, so that the common leading

item is “removed” from all transactions. Obviously, this new

array represents the conditional database of the first

subproblem, which is then processed recursively to find all

frequent item sets containing the split item (provided this item is

frequent).

The conditional database for frequent item sets not containing

this item is obtained with a simple merge step in right part

(figure 4). The new array and the rest of the original array are

combined with a procedure that is almost identical to one phase

of the well-known mergesort algorithm. Since both arrays are

lexicographically sorted, one merging traversal suffices to create

a lexicographically sorted merged array. The only difference to

a mergesort phase is that equal transactions (or transaction

suffixes) are combined: There is always only one instance of

each transaction (suffix), while its number of occurrences is

kept in a counter. In our example this results in the merged array

having two elements less than the input arrays together: the

transaction (suffixes) cbd and bd, which occur in both arrays,

are combined and their occurrence counters are increased to 2.

Results and Discussion

Data set: The dataset was obtained from the UCI repository of

machine learning databases
10

. The characteristics of Mushroom

dataset selected for the experiment (table 2).

Table – 2

The characteristics of Mashroom dataset

File name
Number of

Records

Number of

Columns

Mushroom.D90.N8124.C2.num 8124 23

Result analysis: We have conducted a detailed study to assess

the performance of projected data based frequent pattern mining

algorithms. The performance metrics in the experiments is the

total execution time taken and the number of patterns generated

for Mushroom data set. For this comparison also same data sets

were selected as for the above experiment with 30% to 70% of

minimum support threshold.

The execution time for all the algorithms with different support

threshold for Mushroom data set (table 3). The time of

execution is decreased with the increase support threshold. The

execution time of the all discussed algorithm is nearby but it can

also be analyzed that the execution time of SaM is

comparatively less for higher support threshold.

Table – 3

Total execution time using Mashroom dataset

Support Total Execution Time in Seconds

FP-Growth H-mine Relim SaM

30 0.13 0.11 0.11 0.11

40 0.11 0.11 0.09 0.10

50 0.09 0.09 0.09 0.08

60 0.08 0.09 0.08 0.07

70 0.08 0.08 0.07 0.06

Conclusion

In this work, an in-depth analysis of few algorithms is done

which made a significant contribution to the search of

improving the efficiency of frequent pattern mining. By

comparing them to classical frequent pattern mining algorithms

strength and weaknesses of these algorithms were analyzed.

A comparison framework has developed to allow the flexible

comparison of FP-growth, H-mine, Relim and SaM algorithms.

The execution time of the all discussed algorithm is nearby but

it can also be analyzed that the execution time of SaM is

comparatively less for higher support threshold.

Research Journal of Material Sciences __ISSN 2320–6055

Vol. 1(2), 1-5, March (2013) Res. J. Material Sci.

International Science Congress Association 5

References

1. Raorane A.A., Kulkarni R.V. and Jitkar B.D., Association

Rule – Extracting Knowledge Using Market Basket

Analysis, Res. J. Recent Sci., 1(2), 19-27 (2012)

2. Agrawal R. and Srikant.R, Fast algorithms for mining

association rules, In Proc. Int’l Conf. Very Large Data

Bases (VLDB), 487–499 (1994)

3. Shrivastava Neeraj and Lodhi Singh Swati, Overview of

Non-redundant Association Rule Mining, Res. J. Recent

Sci., 1(2), 108-112 (2012)

4. Agrawal R., Imielienski T. and Swami A., Mining

Association Rules between Sets of Items in Large

Databases, Proc. Conf. on Management of Data, 207–216

(1993)

5. Pramod S., Vyas O.P., Survey on Frequent Item set

Mining Algorithms, In Proc. International Journal of

Computer Applications (0975 - 8887), 1(15), 86–91 (2010)

6. Han J., Pei H. and Yin. Y., Mining Frequent Patterns

without Candidate Generation, In Proc. Conf. on the

Management of Data (2000)

7. Pei. J., Han. J., Lu. H., Nishio. S. Tang. S. and Yang. D.,

H-mine: Hyper-structure mining of frequent patterns in

large databases, In Proc. Int’l Conf. Data Mining (2001)

8. Borgelt C., Keeping Things Simple: Finding Frequent Item

Sets by Recursive Elimination, Proc. Workshop Open

Software for Data Mining (OSDM’05 at KDD’05,

Chicago, IL), 66–70 (2005)

9. Borgelt C., SaM., Simple Algorithms for Frequent Item

Set Mining, IFSA/EUSFLAT 2009 conference (2009)

10. Blake C.L. and Merz. C.J., UCI Repository of Machine

Learning Databases, Dept. of Information and Computer

Science, University of California at Irvine, CA, USA

(1998)

