
  Research Journal of Management Sciences _____________________________________________ISSN 2319–1171 

Vol. 3(12), 18-26, December (2014)       Res. J. Management Sci. 

 International Science Congress Association              18 

Solving Linear Tri-level Programming Problem using Approaches Based on 

Line Search and an Approximate Algorithm 
HosseiniEghbal

1
 and Nakhai KamalabadiIsa

2 

1Candidate at Payamenur University of Tehran, Department of Mathematics, Tehran 

2Industrial Engineering at University of Kurdistan, Sanandaj, IRAN 

Available online at: www.isca.in, www.isca.me 
Received 27th October 2014, revised 14th November 2014, accepted 26th November 2014 

 

 

 

Abstract 

In the recent years, the bi-level and tri-level programming problems (TLPP) are interested by many researchers and TLPP is 

known as an appropriate tool to solve the real problems in several areas such as economic, traffic, finance, management, 

and so on. Also, it has been proven that the general TLPP is an NP-hard problem. The literature shows a few attempts for 

solving using TLPP. In this paper, we attempt to develop two effective approaches, one based on Taylor theorem and the 

other based on the hybrid algorithm by combining the penalty function and the line search algorithm for solving the linear 

TLPP. In these approaches, by using Karush-Kuhn-Tucker conditions, TLP Pischanged to non-smooth single problem, and 

then it is smoothed by proposed functions. Finally, the smoothed problem is solved using both of the proposed approaches. 

The presented approaches achieve an efficient and feasible solution in an appropriate time which has been evaluated by 

comparing to references and test problems. 

 

Keywords: Linear bi-level programming problem, Linear tri-level programming problem, Karush-Kuhn-Tucker conditions, 

Taylor theorem, Line search method. 

 

Introduction 

It has been proven that the multi-level programming problem, 

especially bi-level programming problem (BLPP), are NP-

Hard problems
1,2

. However a few algorithms have been 

proposed to solve TLPP, several algorithms have been 

proposed to BLPP
3-9

. These algorithms are divided into the 

following classes: global techniques, enumeration methods, 

transformation methods, meta- heuristic approaches, fuzzy 

methods, primal-dual interior methods. In the following, these 

techniques are shortly introduced. 

 

Global techniques: All optimization methods can be divided 

into two distinctive classes: local and global algorithms. Local 

ones depend on initial point and characteristics such as 

continuity and differentiability of the objective function. On 

the other hand, global methods can achieve global optimal 

solution. These methods are independent of initial point as 

well as continuity and differentiability of the objective 

function
10-13

. 

 

Enumeration methods: Branch and bound is an optimization 

algorithm that uses the basic enumeration. But in these 

methods we employ clever techniques for calculating upper 

bounds and lower bounds on the objective function by 

reducing the number of search steps. 

 

These methods search in the all feasible vertex points which 

one of them is optimal solution. 

 

Transformation methods: These methods are interested by 

some researchers for solving BLPP, so that they transform the 

follower problem by methods such as penalty functions, barrier 

functions, Lagrangian relaxation method or KKT conditions. In 

fact, these techniques convert the BLPP into a single problem 

and then it is solved by other methods
15-18

. 

 

Meta heuristic approaches: Meta heuristic approaches are 

proposed by many researchers to solve complex combinatorial 

optimization. Whereas these methodsare too fast and known as 

suitable techniques for solving optimization problems, however, 

they can only propose a solution near to optimal. These 

approaches are generally appropriate to search global optimal 

solutions in very large space whenever convex or non-convex 

feasible domain is allowed. In these approaches, BLPP is 

changed to theone-level problem according to transformation 

methods and then meta-heuristic methods are utilized to find out 

the optimal solution
19- 26

. 

 

Fuzzy methods: Sometimes assigning crisp values to the 

variables, constraints, and objective functions are not 

appropriate. Therefore, in these cases, the fuzzy approach is an 

eligible tool to overcome their ambiguousness. In this category, 

membership functions can be leader, follower or both of 

objective functions also it can be define with constraints and 

variables. There are so many researchers using this method
27-33

. 

 

Interior point methods: The interior point methods formulate 

many large linear programs to non-linear state and solve them 

with nonlinear algorithms. In these methods all iterates need to 
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satisfy the inequality constraints. The primal-dual method is a 

class of these methods which is the most efficient practical 

approach. In interior point methods can be strong competitors to 

the linear algorithm on bigproblems
34, 35

. 

 

The remainder of the pages are structured as follows: basic 

concepts of linear BLPP and TLPP are introduced in Section 2,. 

We provide a smooth method to BLPP and TLPP in Section 3. 

The presented algorithm is proposed in Section 4. 

Computational results are presented for our approaches in fifth 

Section. As result, the paper is finished in Section 6 by 

presenting the concluding remarks. 

 

The linear bi-leveland tri-level programming 

problems  

In this section models of bi-level and tri-level programming 

problems are introduced. BLPP is used frequently by problems 

with decentralized planning structure. It is defined as
36

. 

 min� f�x, y
 = ax + by s. t min� g�x, y
 = cx + dy Ax + By ≤ r, x, y ≥ 0. 
(1) 

 

Wherea, c ∈ R ! . b, d ∈ R " , A ∈ R#× ! . B ∈ R#× " , r ∈ R#, x ∈R ! , y ∈ R "  and %�&, '
 and (�&, '
 are the objective functions 

of the first level and second level.  

 

In general, TLPP is not convex problem; therefore, there is no 

any global algorithm for solving it. This problem can be non-

convex even when all functions and constraints are bounded and 

continuous. Of course, the linear BLPP is convex and 

preserving this property is very important.  

 

Because a tri-level programming problem describes the 

principle particulars of multi-level programming, the proposed 

algorithms will be developed for tri-level programming which 

can be extended for general multi-level programming problems 

which the number of levels is more than three. Hence, just tri-

level programming is studied in this paper.  

 

To describe a TLPP, a main model can be written as follows: min� )*�x, y, z
 = ,*x + -*y + .*/ 0*x + 1*y + 2*z ≤ 3*, s. t min� )4�x, y, z
 = ,4x + -4y + .4/ 04x + 14y + 24z ≤ 34, s. t min5 )6�x, y, z
 = ,6x + -6y + .6/ 06x + 16y + 26z ≤ 36,  x, y, z ≥ 0. 
(2) 

 

Where 07 ∈ R8×9, 17 ∈ R8×:, 27 ∈ R8×;, 37 ∈ R8 , x ∈ R9, y ∈R:, z ∈ R;, ,7 ∈ R9, -7 ∈ R:, .7 ∈ R< , i = 1,2,3, and the x, y, z are 

variables which called the first-level, second-level, and third-level 

variables respectively, and , )*�x, y, z
, )4�x, y, z
, )6�x, y, z
, the 

first-level, second-level, and third-level objective functions, 

respectively.  

 

Some definitions and notations are introduced in order togain an 

optimal solution for TLP problem based on the solution concept 

of bi-level programming [6], 

 

Definition 2.1: The feasible region of the TLP problem when 

i=1,2,3, is S = A�x, y, z
|07x + 17y + 27z ≤ 37  , x, y, z ≥ 0. C (3) 

 

On the other hand, if x be fixed, the feasible region of the 

follower can be explained as S = A�y, z
|17y + 27z ≤ 37 − 07x , y, z ≥ 0C. (4) 

 

Based on the above assumptions, the follower rational reaction 

set is P�x
 = A�y, z
 ∈ argming�x, y, z
, �y, z
 ∈ S�x
C. (5) 

 

Where the inducible region is as follows  IR = A�x, y, z
 ∈ S, �y, z
 ∈ P�x
C. (6) 

 

Finally, the tri-level programming problem can be written as min AF�x, y, z
|�x, y, z
 ∈ IRC. (7) 

 

If there is a finite solution for the TLP problem, we define 

feasibility and optimality for the TLP problem as S = A�x, y, Z
|07x + 17y + 27z ≤ 37 ,   x, y, z ≥ 0C. (8) 

 

Definition 2.2: Every point such as �x, y, z
is a feasible solution 

to tri-level problem if �x, y, Z
 ∈ IR 

 

Definition 2.3: Every point such as �x∗, y∗, z∗
 is optimal 

solution if  F�x∗. y∗, z∗
 ≤ F�x, y, z
 ⩝ �x, y, z
 ∈ IR. (9) 

 

Smooth method for TLPP  

Using KKT conditions for both of last levels in problem (2), the 

following problem is constructed:  min� )*�x, y, z
 = ,*x + -*y + .*/     s. t     0*x + 1*y + 2*z − 3* ≤ 0, 04x + 14y + 24z − 34 ≤ 0, 06x + 16y + 26z − 36 ≤ 0, 
µ�06x + 16y + 26z − 36
 = 0, 
µ16 = −-6,  β�04x + 14y + 24z − 34
 = 0,  β24 = −.4,  x, y, z, µ , β ≥ 0. 

(10) 

 

Because problem (10) has a complementary constraint, it is not 

convex and it is not differentiable. In this paper a smooth 

method is proposed for smoothing complementary constraints in 
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problem (10). Using the following smooth method, problem 

(10) will be smoothed, and then we present two algorithms 

based on Taylor theorem and hybrid algorithm to solve it.  

 

Theorem 3.1: Let, ϕ: R4 → R , ϕ�m, n
 = 2m − n −√4m4 + n4or 

ϕ: R6 → R, ϕ�m, n, ℇ
 = 2m − n − √4P4 + n4 + ℇ ,where P ≥ 0, Q ≥ 0, then ϕ�m, n
 = 0 .⇔  mn = 0,  and  ϕ�m, n, ℇ
 =0 .⇔  mn = ℇS , P ≥ 0, Q ≥ 0 

 

Proof: ϕ�m, n
 = 0 .⇔ 2m − n − √4m4 + n4 = 0  .⇔ 2m − n = T4m4 + n4 .⇔ �2m − n
4 = 4m4 + n4 .⇔ 4m4 + n4 − 4mn = 4m4 + n4 .⇔ − 4mn = 0 .⇔ mn = 0. 

Also  

ϕ�m, n, ℇ
 = 0 .⇔ 2m − n − T4P4 + n4 + ℇ = 0 .⇔ 2m − n = T4P4 + n4 + ℇ .⇔ �2m − n
4 = 4P4 + n4 + ℇ .⇔ 4P4 + n4 − 4mn = 4P4 + n4 + ℇ .⇔ − 4mn = ℇ .⇔ mn = ℇ4 , P ≥ 0, Q ≥ 0. 
 

Using the proposed function ϕ�m, n, ℇ
 = 2m − n −√P4 + n4 − ℇ in problem (10), we obtain the following 

problem: min� )*�x, y, z
 = ,*x + -*y + .*/     s. t      0*x + 1*y + 2*z − 3* ≤ 0, 04x + 14y + 24z − 34 ≤ 0, 06x + 16y + 26z − 36 ≤ 0, 2μU − gU�x, y
 − V4μU4 + gU4�x, y
 − ε = ε4 , i = 1,2, … , l, 
µ16 = −-6, 2βU − hU�x, y
 − V4βU4 + hU4�x, y
 − ε = ε4 , i = 1,2, … , l, 
β24 = −.4,   x, y, z, µ U, βU ≥ 0. 

(11) 

 

Which in the first constraint  P = µ7 ≥ 0, Q = −g7�&, '
 ≥0,    gU�x, y
 =  ,7x + -7y + .7z and ,7 , -7 , .7  are i-th row of A, 

B, C respectively and in the second constraint  P = β7 ≥ 0, Q =−h7�&, '
 ≥ 0,    hU�x, y
 =  ,7x + -7y + .7z − r and ,7 , -7 , .7 
are i-th row of A, B, C. 

Let: 

G(x,y,µ)=

Z[[
[[[
[\2µ* − g*�x, y
 − Vµ*4 + g*4�x, y
 − ℇ
2µ4 − g4�x, y
 − Vµ44 + g44�x, y
 − ℇ⋮2µ : − g:�x, y
 − Vµ :4 + g:4�x, y
 − ℇ _̂__

___̀(12) 

H(x,y, β)=

Z[[
[[[
[\2β* − h*�x, y
 − Vµ*4 + h*4�x, y
 − ℇ
2β4 − h4�x, y
 − Vµ44 + h44�x, y
 − ℇ⋮2β: − h:�x, y
 − Vµ :4 + h:4�x, y
 − ℇ _̂__

___̀                (13) 

a′�&, ', µ
 = a�&, ', µ
 − ℇS , b ′�&, ', µ
 = b�&, ', β
 − ℇS    (14) 

 

Problem (11) can be written as follows: min� )*�x, y, z
 = ,*x + -*y + .*/     s. t      0*x + 1*y + 2*z − 3* ≤ 0, 04x + 14y + 24z − 34 ≤ 0, 06x + 16y + 26z − 36 ≤ 0, b ′�t
 = 0,   a′�t
 = 0,   
µB = −-6, 
βC = −.4,  x, y, z, µ , β ≥ 0.  

(15) 

Where d = �x, y, µ
 ∈ efg4h 
 

Because problem (10) equal to (15), we use the following 

method for solving problem (15).  

 

The proposed algorithm based on Taylor method 

(TA)  

Definition 4.1:  The pair (X,d) is a metric space  which X is a 

non-empty set and d is a metric on X and: i ≥ 0, i�&, '
 = 0 .⇔  & = ', i�&, '
 = i�', &
, i�&, '
 ≤i�&, /
 + i�/, '
. 
 

Definition 4.2:  A sequence A&jC is said to Cauchy if for every k > 0 there is an N such that ∀nopoq|&n − &p| < k. 
 

Theorem 4.1:  All polynomials are continuous on real numbers. 

Additionally&j , √&s
   are continuous for every x., when n is odd 

and for x>0, when n is even. 

 

Proof: The proof of this theorem has been proposed in 37. 

 

Theorem 4.2: Suppose that two functions( and h are 

continuous at x=b. Then ( + ℎ , ( − ℎ  are continuous too at 

x=b. 

 

Proof: The proof has been given by 37.  

 

Theorem 4.3: Letlimu→v (�&
 = w   and f is continuous at L. 

Then, limf�u→v (�&

 = fxlimg�x
y = f�u→v w
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Proof: The proof has been given by 37. 

 

Corollary 4.1: Let g is continuous at a and f is continuous at 

g(a). Then, %z( is continuous at a. 

 

Proof: From above theorem, we have: limu→v�%z(
�&
 = limf�u→v (�&

 = fxlimg�x
y = f�u→v (�,

= �%z(
�,
.   {|Q.} ( |{ .zQd|Q~z~{ ,d ,. 
This finished the proof. 

 

Theorem 4.4 (Taylor Theorem): Let f has n +1 continuous 

derivatives on an open interval containing a. Then for each 

x in the interval, f�x
 = �∑ ����
9! 9�� �x − a
9� + R g*�x
                (16) 

Where the error term R g*�x
,  for some c between a and x, 

satisfies   R g*�x
 = ����!
��
� g*
! �x − a
 g*                 (17) 

This form for the error R g*�x
,  is called the Lagrange formula 

for the reminder.  

The infinite Taylor series converge to f, 

 f�x
 = �� f 9�a
k!
∞

9�� �x − a
9� 

If only iflim →∞ R g*�x
 = 0.               (18) 

 

Proof: The proof of this theorem was given by 37.  

Using above Theorems and corollary, functions b ′ and a′ in 

(15) are always continuous everywhere and it is possible to use 

Taylor Theorem for them in (15). 

 

By applying the Taylor theorem to a feasible point such as df 

for functions b ′ and a′, and taking only two linear part of them 

in problem (15), the following linear functions are constructed:  b ′Uxt9y + ∇b ′Uxt9yxt − t9y = 0,    i = 1,2, … l.             (19) 

Let  

P(t)=��* �t
�4�d
⋮�h�d
 � = Z[[
[\b ′*xt9y + ∇b ′*xt9yxt − t9yb ′4xt9y + ∇b ′4xt9yxt − t9y⋮b ′hxt9y + ∇b ′:xt9yxt − t9y _̂__̀                (20) 

H′Uxt9y + ∇a′Uxt9yxt − t9y = 0,    i = 1,2, … l.              (21) 

Let  

Q(t)=��* �t
�4�d
⋮�h�d
 � = Z[[
[\a′*xt9y + ∇a′*xt9yxt − t9ya′4xt9y + ∇a′4xt9yxt − t9y⋮a′hxt9y + ∇a′:xt9yxt − t9y _̂__̀            (22) 

 

The obtained problem by using Taylor theorem is linear 

programming and can be solved using linear algorithm such as 

simplex method. 

 

The proposed algorithm has following steps: 

 

Initialization: The feasible point d* is created randomly, error ℇ* is given and it is supposed that � = 1 , )�d
 = )*�x, y, z
 =,*x + -*y + .*/, ℇ* is a small and appropriate given error and 

finishing the algorithm depends on ℇ* such that it is finished 

whenever the difference between produced solutions by the 

algorithm in two consecutive iterations is less than ℇ*. 
 

Finding solution: Using Taylor theorem for b ′ and a′  at df 

and (20), (22), in problem (15) we obtain the following 

problem: min� F�d
     s. t      0*x + 1*y + 2*z − 3* ≤ 0, 04x + 14y + 24z − 34 ≤ 0, 06x + 16y + 26z − 36 ≤ 0, P�t
 = 0,   Q�t
 = 0,   
µB = −-6, 
βC = −.4,    t, µ , β ≥ 0.  

(23) 

  

Making the present best solution: Because (23) is an 

approximation for (15) by Taylor theorem, therefore, the 

optimal solution for (23) is an approximation of the optimal 

solution for (15). Thus  dfg* can be a good approximation of 

optimal solution problem (15). Therefore, we let d∗ = dfg* and 

go to the next step. 

 

Termination: If  d�Fxt9g*y, Fxt9y
 < ℇ*  then the algorithm is 

finished andt∗  is the best solution by the proposed algorithm. 

Otherwise, we suppose k=k+1 and go back to the step 2. Which 

d is metric and, d �Fxt9g*y, Fxt9y� = �∑ �)xd7fg*y − )�d7f

4jg4n7�* 
!". 

 

Following theorems show that the proposed algorithm is 

convergent. 

 

Theorem 4.5:  Every Cauchy sequence in real line and complex 

plan is convergent.  

 

Proof: Proof of this theorem is given in [34]. 

 

Theorem 4.6: Sequence A)fC which was proposed in above 

algorithm is convergent to the optimal solution, so that the 

algorithm is convergent.  

 

Proof: Let �)h
 = �)�dh

 = �)�d*h 
, )�d4h 
, … , )�djg4nh 

=  �)*�h
, )4�h
, … , )jg4n�h
 
. 

According to step 4  i�)fg*, )f
 = d �Fxt9g*y, Fxt9y� = �∑ �)xd7fg*y −jg4n7�*)�d7f

4
!" < k*               (24) 
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Therefore �∑ �)xd7fg*y − )xd7fy�4jg4n7�* 
 < k*4 . There is large 

number such as N which k+1>k>N and j=1,2,…,2m+n we have: �)��fg*
 −  )��f

4 < k*4 , therefore  �)��fg*
 −  )��f
� < k* �z� �}d P = � + 1, 3 = � dℎ}Q �} ℎ,�} ∀nopoq�)��n
 − )��p
� < k*. 
 

This shows that for each fixed j, �1 ≤ j ≤ 2m + n
, the 

sequence �F¡�*
, F¡�4
, … 
 is Cauchy of real numbers, then it 

converges by theorem 4.5. 

 

Say,  )��n
 → )�  as P → ∞. Using these 2m+n limits, we define ) = �)*, )4, … , )4ngj
. From (21) and m=k+1, r=k, i�)n , )p
 <k* 

 

Now if  r → ∞ , by)p → F we have i�)n , )
 ≤ k*. 

This shows that F is the limit of �)n
 and the sequence is 

convergent by definition 3.3 therefore proof of theorem is 

finished. 

 

Theorem 4.7:  If sequence Af�t9
C is converge to f�t
 and f be 

linear function then At9C is converge to t. 

 

Proof: Proof of this theorem is given in [34]. 

 
Theorem 4.8:  Problems (15) and (23) are equal therefore they 

have same optimal solutions. 

 

Proof: It is sufficient we prove that,�b ′�d
 − ��d
� < k and �a′�d
 − ��d
� < k for every arbitrary ε>0. According to the 

theorem 4.4 and (19), (20) we have: 

P(t) =b ′xt9y + ∇b ′xt9yxt − t9y b ′ (t) = b ′xt9y + ∇b ′xt9yxt − t9y + ∇4b ′xt9y x�¢��y"
4 + ej�d
. 

�b ′�d
 − ��d
� = £∇4b ′xt9y xt − t9y42 + ej�d
£
≤ £∇4b ′xt9y xt − t9y42 £ + |ej�d
| 

 

Now if Q → ∞, from (18) |ej�d
| < ¤4 and let �∇4b ′xt9y� < P 

that m is an arbitrary large number, this is possible because ∇4b ′xt9y is a number. 

 

If � → ∞ because F is linear then by theorems 4.6 and 4.7 t9 → t therefore �t9 − t � < k4, say k4 = V ¤n 

.⇒ �b ′�d
 − ��d
� ≤ £∇4b ′xt9y xt − t9y42 £ + |ej�d
|
≤ �∇4b ′xt9y� £xt − t9y42 £ + |ej�d
|
≤ P. k2P + k2 = k. 

 

Now we prove �a′�d
 − ��d
� < k, Q(t) =a′xt9y +∇a′xt9yxt − t9y a′ (t) = a′xt9y + ∇a′xt9yxt − t9y + ∇4a′xt9y x�¢��y"
4 + ej�d
. 

�a′�d
 − ��d
� = £∇4a′xt9y xt − t9y42 + ej�d
£
≤ £∇4a′xt9y xt − t9y42 £ + |ej�d
| 

 

Now if Q → ∞, from (18) |ej�d
| < ¤4 and let �∇4a′xt9y� < P 

that m is an arbitrary large number, this is possible because ∇4a′xt9y is a number. 

If � → ∞ because F is linear then by theorems 4.6 and 4.7 t9 → t therefore �t9 − t � < k4, say k4 = V ¤n 

.⇒ �a′�d
 − ��d
� ≤ £∇4a′xt9y xt − t9y42 £ + |ej�d
|
≤ �∇4a′xt9y� £xt − t9y42 £ + |ej�d
|
≤ P. k2P + k2 = k. 

This finished proof of theorem. 

 

Hybrid algorithm (HA) 

We use a penalty function to convert problem (23) to an 

unconstraint problem.Consider problem (23); we append all 

constraints to the first level objective function with a penalty for 

each constraint.Then, we obtain the following penalized 

problem. min� F�d
 + ¦*�βC + .4
4 + ¦4�µ1 + -6
4 + ¦6xP�t
y4
+ ¦SxQ�t
y4
+ � ¦7�07x + 17y + 27z − 37
4

7 �25
 

 

Now we solve problem (23) using our line search method. The 

line search method is proposed as follows:  

 &is a vector and i is a direction, and % is the smallest value 

from & in the direction i. Our method searches along the 

directions �i*, i4, … , ij¢*
wherei� , ¨ = 1,2, … , Q − 1is a 
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vector of zeros except at the ¨th position which is 1 andij =� *√j , *√j , , … , *√j�. 
Clearly, all directions have a norm equal to 1 and they are 

linearly independent search directions. In fact, the proposed line 

search method uses the following directions as the search 

directions: i* = �1,0, … ,0
, i4 = �0,1, … ,0
, … , ij¢* = �0, … ,1,0
, ij =� *√j , *√j , , … , *√j�                                                                 (26) 

 

Therefore, along the search directioni� , ¨ = 1,2, … , Q − 1 , the 

variable &�is changed but other variables will not be 

changed.The proposed line search method is explained for 

minimizing a function of different variables. Convergence of the 

presented algorithm will be proposed with the differentiable f.  

Initial step: ℇ > 0is a small scalarwhich is used for finishing 

the algorithm, and let i*, i4, … , ij¢*be the coordinate 

directions and ij be a vector of 
*√j. Choose an initial point&* 

let&* = '*. � = ¨ = 1,and go to the next step. 

 

Main step: Letµ�which is optimal solution to minimize�'� +
µi�
, and let'�g* = '� + µ�i� 

If  ¨ < Qreplace ¨ by ¨ + 1, and repeat step1. Otherwise, if ¨ =Q, go to the next step. 

Termination: Let &fg* = 'jg*if  ‖&fg* − &f‖ < k  then stop, 

otherwise, let  '* = &fg*and ¨ = 1, replace� by � + 1, and 

repeat step2.  

 

We now propose a theorem which establishes the convergence 

of algorithms for solving a problem andtwo problems (15) and 

(25) have the same optimal solution. 

 

Theorem 5.1: 

Consider the following problem: minu %�&
  {. d (7�&
 ≤ 0,  i=1,2,…,m, ℎ��&
 = 0,  j=1,2,…,l, 

(27) 

 

where%, (*, … , (n , ℎ*, … , ℎh are continuous functions on ej 

and  ª  is a nonempty set in ej.  Suppose that the problem has a 

feasible solution, and ¦ is a continuous function as follows: 

¦�x
 = � ∅[(7�&
]n
7�* + � ∅[ℎ7�&
]h

7�*  (28) 

 

where ∅�'
 = 0  if  y ≤ 0, ∅�'
 > 0  |%  ' > 0. (29) ∅�'
 = 0  if  y = 0, ∅�'
 > 0  |%  ' ≠ 0. (30) 

Then,  infA%�&
: (�&
 ≤ 0,   ℎ�&
 = 0, & ∈ ªC= infA%�&
 + μ¦�&
: & ∈ ªC 
(31) 

 

Whereµis a large positive constant�µ → ∞
. 
 

Proof: This theorem has been proven by [29].  

 

Computational results  

To illustrate both algorithms, we consider the following 

examples. 

Example [38]: Consider the following linear tri-level 

programming problem:  min� x − 4y + 2z           s. t  −x − y ≤ −3,            −3 x + 2y − z ≥ −10, min� & + ' − /           s. t                      −2 x + y − 2z ≤ −1,                         2x + y + 4z ≤ 14, min� & − 2' − 2/                           s. t                                  2x − y − z ≤ 2,                          x, y, z ≥ 0. 

 

 

Using KKT conditions, the following problem is obtained: 

min
x

x − 4y + 2z           s. t −x − y ≤ −3, 
3 x − 2y + z ≤ 10, −2 x + y − 2z ≤ −1, 
2x + y + 4z ≤ 14,  β

1
�−2 x + y − 2z + 1
 = 0,  β

2
� 2x + y + 4z − 14
 = 0,  β

1
+  β

2
= 1,  2x − y − z ≤ 2, 

µ� 2x − y − z − 2
 = 0, 
µ�−1
 = −2, 
x, y, z,  β

1
,  β

2
 , µ ≥ 0. 

 

By the proposed function, the above problem becomes: 

min
x

x − 4y + 2z 

s. t −x − y ≤ −3, 
3 x − 2y + z ≤ 10,  2β

1
− �−2 x + y − 2z + 1
 − V β

1

2 + �−2 x + y − 2z + 1
2 +� = 0, 
 2β

2
− �2x + y + 4z − 14
 − V β

2

2 + �2x + y + 4z − 14
2 +� = 0, 
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 2µ − �2x − y − z − 2
 − Tµ2 + �2x − y − z − 2
2 +� = 0,  β
1

+  β
2

= 1, 
µ�−1
 = −2,   x, y, z,  β

1
,  β

2
 , µ ≥ 0. 

 

Using the Taylor theorem, we obtain a problem in the form of 

Eq. (23) and solve it using the proposed algorithm. Optimal 

solution is presented according to Table 1. 

 

Table-1 

Comparison of optimal solutions by Taylor algorithm 

Example 1 

Optimal 

Solution 

Best solution by our method 

with different values of ε 

ε=0.01                 ε=0.001 

Best solution 

according to 

reference38. 

(�∗,�∗,�∗
 (4.1,5.9,0) (4,6,0) (4,6,0) 

�1�x, y, z
 -19.5 -20 -20 

�2�x, y, z
 10 10 10 

�3�x, y, z
 -7.5 -8 -8 

 

Example (solving by hybrid algorithm): Consider the 

following linear tri-level programming problem:  

 min� x − 4y + 2z           s. t  −x − y ≤ −3,            −3 x + 2y − z ≥ −10, min� & + ' − /           s. t                      −2 x + y − 2z ≤ −1,                         2x + y + 4z ≤ 14, min� & − 2' − 2/                           s. t                                  2x − y − z ≤ 2,                          x, y, z ≥ 0. 

 

 

Using hybrid algorithm the problem is solved. Optimal solution 

for this example by hybrid algorithm is presented according to 

Table 3. 

 

Table-3 

Comparison of optimal solutions by hybrid algorithm – 

Example 1 

Optimal 

Solution 

Best solution by 

hybrid algorithm 

Best solution 

according to 

reference 38. 

(�∗,�∗,�∗
 (4.3,6.2,0.1) (4,6,0) 

�1�x, y, z
 -20.3 -20 

�2�x, y, z
 10.4 10 

�3�x, y, z
 -8.3 -8 

Example 2 is solved by hybrid algorithm and computational 

results are proposed in table 4. 

 

Table-4 

Comparison of optimal solutions by hybrid algorithm 

Example 2 

Optimal 

Solution 

Best solution by 

hybrid algorithm 

 

Best solution 

according to 

reference 38. 

(�∗,�∗,�∗
 (10.1,28.4,11.6) (10,28.33,11.66) 

�1�x, y, z
 147.16 146.66 

�2�x, y, z
 176.93 176.6 

�3�x, y, z
 345.33 343.3 

 

Conclusion and future work 

In this paper, we used the KKT conditions to convert the 

problem into a single level problem. Then, using the proposed 

function, the problem was made simpler and converted to a 

smooth programming problem. The smoothed problem was 

been solved, utilizing the first proposed algorithm based on 

Taylor theorem and hybrid algorithm. Comparing with the 

results of previous methods, our algorithms have better 

numerical results and present better solutions. The bestsolutions 

produced by proposed algorithms are feasible unlike the 

previous best solutions by other researchers.  

 

In the future works, the following should be researched: i. 

Examples in larger sizes can be supplied to illustrate the 

efficiency of the proposed algorithms. ii. Showing the efficiency 

of the proposed algorithms for solving other kinds of TLP such 

as quadratic and non-linear TLP.  
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