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Abstract 

In any analysis of practical problem using Finite Element Method (FEM), discretization errors are intentionally introduced 

which most of the time lead to boundary mismatch problems in curved areas where boundary condition of a third kind is 

applied. In this paper linear finite elements approach with a Multi

proposed to minimize the numerical errors.
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Introduction 

In general truncation or discretization errors, rounded

precision and approximations in the mathematical model of a 

real problem are errors which arise in the approximate 

numerical solutions
1
.Modelling errors arising mainly from 

chosen shape functions should be kept as low as possible in any 

finite element analysis to obtain solutions close to the exact 

solution
1,2

. 

 

In this paper, we analyse this problem using local error 

estimation, the h-adaptive mesh and the Multi

And as examples the magneto-thermal transient phenomena 

have been taken into consideration. 

 

Localized error determination 

The localized error ei (x, y, z) at any point i (x, y, z) in a 

medium, where a physical phenomenon is taking place, is 

normally defined as the difference between the exact solution U 

(x, y, z) and the approximate one U(x, y, z) 

finite element method: 

nie (x,y,z) U(x,y,z) U (x,y,z) 0,  if n    = − → → ∞

Where the degree of freedom of nU (x, y, z) 

degree of freedom of n-1U (x, y, z) and the Taylor expansion of 

U at the point i is given by: 

( ) ( ) (i i i i
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of the time lead to boundary mismatch problems in curved areas where boundary condition of a third kind is 

applied. In this paper linear finite elements approach with a Multi-Edge concept and h-Adaptive mesh generation have been 

umerical errors. 

error, boundary-mismatch, multi-Edge, d-Simplex-subdivision.

In general truncation or discretization errors, rounded-off in 

approximations in the mathematical model of a 

real problem are errors which arise in the approximate 

.Modelling errors arising mainly from 

chosen shape functions should be kept as low as possible in any 

solutions close to the exact 

In this paper, we analyse this problem using local error 

adaptive mesh and the Multi-Edge concept. 

thermal transient phenomena 

(x, y, z) at any point i (x, y, z) in a 

medium, where a physical phenomenon is taking place, is 

normally defined as the difference between the exact solution U 

U(x, y, z) obtained by the 

e (x,y,z) U(x,y,z) U (x,y,z) 0,  if n    = − → → ∞              (1) 

U (x, y, z) is greater than 

and the Taylor expansion of 

)i i i i
U U x x y y z z ... = + − + − + −

        

 (2) 

It is shown that, 
 

p+1

ie (x, y, z) = O(h ), h 0                   →

Where: h denotes the maximal size (length) of the element and p 

the order of the element
4
. 

 

Equation (3) shows that in the FEM 

evaluated within an element is constant and the corresponding 

error in the fields is ei = O (h). By the interpolation 

theory(Figure-1), the flux at a given  node is determined by 

averaging the fluxes of neighboring elements hav

in common; and so we obtain errors O (h

Around a given node, the local error is defined as follows
 

i

i se (D D )d                     = − Ω
Ω∫

Generally, in the nodal classic linear Finite Element Method, the 

interpolation functions are the same as the simplex coordinates

k
,ς  k = 1, …, d+1, of a given point Pin side an element e, 

where d denotes the space dimension. In this case the flux 

density D
r

in equation (4) determined directly from the shape 

function in scalar field problems is given by the following 

formula: 

 
d+1

k kk=1
D  U  ( U )      ς= α∇ = α ∇∑

ur urr

Where: U denotes the unknown scalar function,

d+1,the value of the unknown function U at the node k of the 

element, and α  a parameter associated with the physical 

properties of the domain. 
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Adaptive mesh generation have been 

subdivision. 

e (x, y, z) = O(h ), h 0                                 (3)  

: h denotes the maximal size (length) of the element and p 

Equation (3) shows that in the FEM linear formulation, the flux 

evaluated within an element is constant and the corresponding 

= O (h). By the interpolation 

1), the flux at a given  node is determined by 

averaging the fluxes of neighboring elements having this node 

in common; and so we obtain errors O (h
2
) at all nodes

1,3
. 

Around a given node, the local error is defined as follows
4
: 

e (D D )d                                   (4) 

Generally, in the nodal classic linear Finite Element Method, the 

interpolation functions are the same as the simplex coordinates

k = 1, …, d+1, of a given point Pin side an element e, 

where d denotes the space dimension. In this case the flux 

determined directly from the shape 

function in scalar field problems is given by the following 

k k
D  U  ( U )      ς               (5) 

Where: U denotes the unknown scalar function,
kU ,  k = 1, …, 

d+1,the value of the unknown function U at the node k of the 

a parameter associated with the physical 
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Figure-1: One -dimensional interpolation theory. 

 

The finite element approach in vector field problem show ever 

relies on basis vector element functions
2, 5

. There are many ways 

of defining these functions but the following method for d-

Simplexes is used in this paper
2
: 

 

( )nn i j j i
          LN = ∇ − ∇ς ς ς ς

r rr
              (6) 

Where: n = 1, 2, ..., n are the edge numbers, i and j  ∈ {1, 2, …, 

d+1}  are the vertex numbers, and Ln, is the length of the n
th

 

edge of the element. The flux density D
r

in equation (4) 

determined directly from the shape function in case of magnetic 

field problems
2,6,7

, is thus obtained by the following equation: 
 

N

nn i jn=1
D U ( )            2U L=∇× = ∇ ×∇ς ς∑
r r r r r

              (7)  

The vector U
r

in equation (7) denotes the unknown vector 

function (vector potential in magnetic field problems for 

example), n
U , n  = 1, 2, ..., n are the tangential component of 

the vector function along the n
th

 edge of the element. 
 

The entity sD
r

 in equation (4) represents the average nodal flux 

density of the area defined by the elements having in common 

node i of Figure-2 (region around i). In order to generalize the 

method for any point P of a given element, the local error ei in 

equation (4) is replaced by 
 

d 1

e i i

i 1

E e                                ς
+

=

=∑                            (8)  

Where: d represents the spatial dimension and i
,ς 1≤i≤ d + 1, 

barycentric coordinates of the point P. 

 

Concept of multi-edge 

Definition of Multi-Edge: A portion of curve C approximated 

by successive segments of lines Sn, C = Σ Sn, n =1, ..., N, joining 

two vertices of a linear element is termed Multi-Edge. A 

segment of line Sn is a virtual edge of a virtual element which 

may be generated if needed and N is the number of possible 

virtual edges which can be generated. For example the circular 

arc boarded by the points 2 and 3 (Figure-3) is represented by 

the segments of line S1 = [2 9], S2 = [9 10] and S3 = [10 3]. 

 

Two main reasons led to the introduction of the concept of 

Multi-Edge: i. Practically it's impossible to represent non-

polynomial curves by polynomial elements such that, there will 

be no "slivers" of the domain uncovered by an element or to 

eliminate extra slivers added to it
1
. ii. To be able to refine the 

mesh adaptively in the areas where boundary condition of a 

third kind is applied in order to reduce discretization errors 

leading to boundary mismatch problems in that area.  

 

With this concept, the faces of an element lying along the 

boundaries could be represented by a special structure which 

could be compared to multiplex cable in data and 

communication networks. This element will have normal nodes 

and virtual nodes or normal edges and virtual edges. For 

example in Figure-3, the normal representation of the element 2 

is {0, 2, 3} and its full representation is {0, 2, 9, 10, 3}.   

 
Figure-2: node i in its region of support (2-dimensional case). 

 
Figure-3: Multi-edge definition. 

 

In fact a Multi-Edge element is identified as an object with d-

Simplex object inheritance, where virtual nodes or virtual edges 

are automatically generated when needed. The definition of a 

Multi-Edge Element Class may look like: 
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Multi-Edge Element Class: public d-Simplex{ 

NewPoints Array;  

NewEdges Array; 

GenerateNewPoints();      

GenerateNewEdges(); 

….. 

}; 
 

The manner in which this virtual edges or nodes will be inserted 

progressively in mesh when necessary, will be presented in the 

following section. 
 

h-Adaptive mesh generation: The adaptive methods are 

brought into the numerical analysis techniques such as the Finite 

Difference Method (FDM), the FEM and the Boundary Element 

Method (BEM) in order to use computer resources (for example 

memory) more efficiently. In many cases, the results of only a 

few regions for a given domain occupied by a system to be 

analysed are of interest
1,8,9

. In some cases, before better 

numerical approximation results could be achieved, a high 

degree of freedom density must be introduced in some special 

regions. 
 

In the h-adaptive process, the size of the elements of interest is 

reduced in the manner that, the length of the maximal edges hmax 

of all elements in that region is also reduced (requirement 

hmax→ 0). This method is also called mesh refinement. The 

mesh refinement process in this paper relies on two concepts: 

subdivision of a d-Simplex and construction of new Multi-Edge 

elements through an old one.  
 

The regions of interest, where the size of elements must be 

decreased, are defined by the error indicators as presented above 

in the equations (4 and 8).The regions are either the region of 

support of a node (Figure-2) or of an element (Figure-4).  

 

 
Figure-4: An element e in the region of support. 

 

If e is the element in which the detected error is not acceptable, 

then e and all the elements which share nodes with it form a 

local region Ωe, called region of support of e (Figure-4). 

 

The task of reducing the size of elements in the region of 

support of an element e is performed in two steps. The first step 

is subdividing an element e and its neighbours and the second 

step is the shape regulation of the new resulting elements to get 

a reasonable mesh for Ωe. 

 

Subdivision of a d-Simplex: The method of subdividing an 

element is based on analysing the size of the element. This 

method was actually developed for an element which does not 

have any face lying along curved boundaries of the domain. 

This technique is used in a simplified form and adapted to treat 

elements with Multi-Edge structure. 
 

An element is subdivided according to the following properties: 

i. Near equilateral; ii. The longest edge is greater or equal the 

double of the shortest edge; iii. If it does not satisfy any of the 

two conditions above; iv. Possesses Multi-Edge structure. 

 

Subdivision of a 2-Simplex: Suppose the element to be 

subdivided is e = {I, J, K}, where I, J and K denote the vertices 

of the element. If the element satisfies the condition a), the 

subdivision is done by generating points at the middle of the 

edges. The Mi’s denote the middle points (Figure-5(a)). 

(a) (b)
 

Figure-5: Reference element e near equilateral case a): (a) sub-

division of e, (b) sub-division of a neighbour element of e. 

 

In this case the element of reference is subdivided into 4 

elements {I, M1, M2}, {J, M1, M3}, {K, M2, M3}, and {M1, M2, 

M3}. Any neighbour triangle en = {E1, E2, N} sharing common 

edge [E1, E2] with the element is then divided into two as in 

Figure-5(b). The new elements resulting from en can be written 

as 

 

{E1, Mi, N} and {E2, Mi, N} i∈{1, 2, 3}. 

 

If the element possesses the property b) a point is generated in 

the middle of the longest edge and it is subdivided into two new 

elements as in Figure-6(a). The neighbour element which shares 

this edge with the element of reference is also subdivided in the 

same manner (Figure-6(b)). 
 

If the element has the property c) then a Gauss point M is 

generated and three new elements are formed (Figure-7(a)). The 

new elements can be written as {I, J, M}, {I, K, M} and {J, K, 

M.}. 
 

If the element is with Multi-Edges (property d)), one of the free 

points (virtual node of the mesh) say N1 is inserted in the 

system, then two new elements are generated and one external 

edge is replaced by two (Figure-7(b)). The new elements can be 

represented as {I, N1, K} and {N1, N2, J, K}.  
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                       (a)             (b) 

Figure-6: The longest edge of the reference element e is greater 

or equal the double of the shortest edge case b): (a) sub-division 

of e, (b) sub-division of a neighbour element of e. 

(a) (b)  
Figure-7: Case c): Reference element e does not satisfy the 

conditions a) and b): (a) sub-division of e. case d): Reference 

element e possesses Multi-Edge structure: (b) construction of 

new Multi-Edge elements from e. 

 

Hence N1 is no more a virtual node and will be treated as a new 

generated point. In fact if there are many free points in the 

element, the error indicator has to inform the mesh refiner 

which optimal point to be inserted.  

 

Subdivision of a 3-Simplex: The process of subdividing a 

given 3-Simplex is just three-dimensional approach of the 

methods presented above. The manners which the elements are 

subdivided in cases a), b) and d) are shown figures (Figure-8(a, 

b), Figure-9(a, b), Figure-10(a, b, c)): 

 

In case a) the element of reference e = {I, J, K, L} is subdivided 

in 8 new elements (Figure-8 (a)) : {I, M1, M2, M3}, {J, M1, M4, 

M5}, {K, M2, M4, M6}, {L, M3, M5, M6}, {M1, M2, M3, M5}, 

{M1, M2, M4, M5}, {M2, M4, M5, M6}, and {M2, M3, M5, M6} 

and any neighbour element sharing common facet with it is 

divided into 4(Figure-8 (b)). 
 

In case b) the element of reference e = {I, J, K, L} is subdivided 

in 2 new elements (Figure-9 (a)):{I, J, M, L}, {J, K, M, L}and 

any neighbour element sharing common edge with it is also 

divided into 2 (Figure-9 (b)). 
 

In case d) the element of reference e = {I, F1, F2, F3} is 

destroyed and replaced by 4, 3 or 2 new elements according to 

the size of the external edges: { I, F1, N1, N2},  {I, F2, N1, N3}, 

{I, F3, N2, N3}, and {I, N1, N2, N3}(Figure-10(a)), { I, F1, N1, 

N2},  {I, F2, N1, F3}, and {I, F3, N1, N2}}(Figure-10(b)),  { I, F1, 

N1, F3} and {I, F2, N1, F3}(Figure-10(c)). 

 
(a)                      (b) 

Figure-8: Reference element e near equilateral case a): (a) sub-

division of e, (b) sub-division of a neighbour element of e. 

 
(a)                        (b) 

Figure-9: The longest edge of the reference element e is greater 

or equal the double of the shortest edge case b): (a) sub-division 

of e, (b) sub-division of a neighbour element of e. 

 
d-Simplex Shape Regulation in its Domain of Support: The 

new elements generated for the domain of support of element e 

(Figure-4) have to be controlled if they satisfied the following 

condition: 

 

All elements must converge towards the equilateral or avoid 

generating elements of small internal angles, this to minimize 

the errors of resolution. It is said that finite element resolution 

errors are inversely proportional to the sine of the smallest 

internal angles
2,15

. 

 

In addition to the previous condition, the concept of zones of a 

d-Simplex-face point is introduced to ensure the regularity of 

any element in its support area. This concept consists in saying 

that, for each facet of an element, a special zone is predefined 

by the structure of the element. If the neighboring point of this 

facet is in this zone, the facet can be considered as regular
15

. 

 

The neighbor point of a facet of a d-Simplex is the n
th

 vertex of 

the neighboring element en that does not belong to e. For 

example in the figure (Figure-11) N is defined as a point close 

to the facet named face-k. In general, a k-zone of a k-face of a 

d-simplex is a semi-opened sub-zone of the k-zone, delimited by 

the subspaces of dimension d-1 supporting the facets of the d-

simplex
15

. 
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(b)  
Figure-10: Reference element e possesses Multi-Edge structure case d): (a) construction of 4 new Multi-Edge elements from e, (b) 

construction of 3 new Multi-Edge elements from e, (c) construction of 2 new Multi-Edge elements from e. 

 

N

k-Zone
j-Zone

i-Zone

i

j k

face-i

face-j

face-k

Figure-11: Acceptable region of neighbour points. 

 

Indeed it is easy to see that any point N in this k-zone forms 

with the face-k of the d-simplex e a non-degenerate d-simplex en 

= {face-k, N} if the distance between this facet and the point N 

is acceptable. In other words, the point N must not be too far 

and not too close to this facet. In order to obtain an optimal k-

zone two delimiting spheres of the facet are introduced. The 

first is the circumscribed d-sphere of the d-simplex e and the 

second a sphere BR having the same center as the d-sphere but 

with a radius R greater than the radius r (Figure-12). The zone 

in the neighborhood of point N is defined by 

 

k r R
FNPZ   =  k-Zone B B              ∩ ∩              (9)  

 

for a k-face of an element
15

.   

 

The centre C and the radius r of the circumscribed d-sphere Br 

of the d-simplex e are defined as 

 

( ) ( )

( ) ( )

d
2 2

i i
1

1 21 1 1 d d

i = 11 2 1 2

d 1 1 d d d
2 2

i i1 d+1 1 d+1

1 d+1

i = 1

p p
C p p p p

2   

C p p p p
p p

−
 

−    − −
    

=     
    − −     −
  

∑

∑

K

M  M M M M

K

        (10) 

( )
d

2
2 i i

1

i = 1

r p C           = −∑              (11) 

 

where: Pi, i = 1, …, d+1, are the vertices of the simplex, 
n

ip , n  

= 1 , …, d, are their Cartesian co-ordinates and ,  C
n
, n = 0, 1, ..., 

d,  are the Cartesian co-ordinates of the centre C. The choice of 

the radius R of the sphere depends on the optimal size of the 

transition elements one wants to have approximately in the 

region of interest. Here R = αr, α > 1, where  α∈ 15
. 

 

Now a k-face of an element is admissible if its neighbor point N 

belongs to FNPZk. In the case where the condition is not 

satisfied then, it’s must be checked, if N ∈ Br or not. If N ∈ Br 

then the 'swapping rule' is used to reorder the elements 

otherwise a new point is generated in the FNPZk for this facet
9, 

10, 15
. 

 

R

Neighbour

Zone-k

i

j k

j

e

Neighbour

Zone-j

Neighbour

Zone-i

R

BR

Br

r

 
Figure-12: Acceptable region of neighbour points. 

 

The h-Adaptive approach adopted in this paper is summarised in 

Figure-13. The h-Adaptive method used to solve the magneto-

thermal problem treated in
11

 is summarized as in Figure-14:  
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e = 1, number of elements

Numerical solution acceptable

Find the region of support of e

Refine the region of support of e

en = 1, number of new elements

d-Simplex shape

 
Figure-13: Refinement of the region of support of each error element. 

 

Start Mesh:Generate fine elements in critical regions 

and coarse elements in the rest of the problem domain

Solve Magnetic Field Problem

Solve Thermal Problem

Evaluate error at the centroid of each element

Any inadmissible error elements
yes

R
efin

e
th

e reg
io

n
 o

f su
p

p
o

rt 

o
f each

 erro
r elem

en
t

 
Figure-14: Summary. 
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Results 

Slot cut in all armature of a motor: A problem treated by P. P. 

Silvester and R.L. Ferrari has been considered. The example 

relies on a slot cut in all armature of a motor (Figure-15), which 

is supposed to represent detail from the simplified whole motor 

cross-section
12

. 

 

H-shaped copper bus-bar: Another problem treated by P. P. 

Silvester and R.L. Ferrari has been considered to check the 

validity for the FEM analysis of diffusion phenomena
12

. The 

problem consists of an H-shaped copper bus-bar with overall 

dimensions 60 mm x 60 mm carrying current at domestic power 

frequency. The skin depth in copper at 50Hz is about 9mm, so 

that the calculation of the field penetration into the conductor 

and the transverse current distribution requires a fully eddy 

current treatment not readily effected analytically. Figure-16(a) 

shows the overall geometry concerned. Also an artificial closure 

was created at a circular boundary of radius 100mm, on the 

basis that at such a distance the field lines were expected to 

form a circular pattern regardless of local irregularities in the 

conductor outline. Thus a Neumann boundary condition was 

assumed on the symmetry axes, ensuring that the computed field 

lines intersected these lines at right angles, whilst it was 

permissible arbitrarily to assign A = 0; at the 100mm-radius 

circular boundary. 

Problem introduced by Webb and Forghani: The problem 

was considered to evaluate the relative performance of their 

hierarchical tetrahedron
13

. The model is represented by a 

magnetic circuit which is driven by a coil having a uniform 

current density for a supply current of 1A. A copper block 

(Figure-15) is placed in the air gap of this magnetic circuit 

having the following characteristics: i. the relative permeability 

of the non-conductive iron: 1000; ii. the conductivity of copper: 

5.7x107 Sm
-1

; iii. the frequency set: 177.7565 Hz. 

 

Over the entire domain where the physical phenomenon is 

taking place, the dissipated power P and the stored magnetic 

energy E (Figure-17) are evaluated at each time step as follows: 

 

c

1 2
P d   

−

Ω
= σ Ω∫ J                        (13) 

 

t

2
1

E dΩ
2 Ω

=
µ∫
B

                                                   (14) 

 

Where: J denotes current density, B represents the magnetic 

flux density, Ωc denotes the region occupied by the copper 

block and Ωt is the whole domain where the physical 

phenomenon is taking place. 

(a) (d)  
 

(b) (c )  
Figure-15: (a) Armature slot in an electric motor

12
, (b) Triangular finite element representation of the slot problem: 2245 Elements, 

1213 nodes, (c) Finite element solution of the electric machine slot problem, (d) Average Error computed. 
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(a) (b)  

(c ) (d)  
Figure-16: (a) Triangular finite element representation of the problem: 1273 nodes and 2448 elements, (b) contour plots of |A|, 

representing magnetic flux lines at5 Hz, 1213 nodes, (c) contour plots of |A|, representing magnetic flux lines at 50 Hz, (d)contour 

plots of |A|, representing magnetic flux lines at 200 Hz. 

 

Problem of TEAM Workshop: The distribution of the 

temperature (measured in °C) of the aluminum plate in the 

problem 7 (Figure-18)
14

. 

 

Conclusion 

In any numerical analysis to obtain an appreciable approximate 

resolution of the physical phenomena one proceeds by the 

minimization of the errors. This minimization of numerical 

errors is considered as the basis of analysis in this article. By the 

finite element method an approach to solve the problem was 

made using an h-adaptive mesh process. The goal is to show 

that classical linear finite elements can be used to find solutions 

for many physical phenomena. Localized error minimization 

criteria with the Multi-Edge concept and the use of the h-

adaptive mesh allowed us to obtain significant numerical results 

while considerably reducing the computation time. Practical 

examples were taken into account to validate the localized error 

usage by methods proposed in this article. 
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(a) (c )  

(b)  
Figure-17: (a) 3D FEM model, (b) accumulated magnetic energy, (c) Representation of magnetic flux density vectors at nodes in a 

quarter-cross section of the copper block C in 3D. 

 

(a) (b)  
Figure-18: (a) 3D FEM model, (b) Representation of the temperature distribution curves on the top of the plate at time t = 67s. 
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